Telegram Group & Telegram Channel
Почему сети выучивают базисы Фурье?
или эмерджентность неприводимых представлений 🤤

В последние несколько лет стало модным использование симметрий 👥 данных для построение более эффективных моделей (en. inductive biases; обзорная статья на Кванте; перевод). Например, в моделировании климата удобно рассматривать Землю как единичную сферу – погода будет функцией, задающейся двумя координатами вместо трёх для Эвклидового пространства.

В моих любимых графах симметрии активно используются для моделирования молекул – например, для предсказания межатомных взаимодействий модели стоит быть эквивариантной по E(3). Использование симметрий позволяет значительно снизить количество параметров, стабилизирует процесс тренировки и улучшает генерализацию 📈. Но это немного спорно – недавние результаты говорят о том, что подходы, которые не ограничивают модель эквивариантностью, могут выбивать метрики лучше. В любом случае, всех заинтересовавшихся отправляю в мини-книжку Бронштейна. 📃

Известно, что фильтры свёрточных сетей для обработки изображений очень напоминают по форме фильтры Габора, соответствующие активациям в зрительных долях макак. Как так получается? 🧐

Недавно вышедшая статья “Harmonics of Learning: Universal Fourier Features Emerge in Invariant Networks” делает шаг в объяснении этого феномена. Для некоторого класса нейросетей (например, биспектральных с ICLR’23) если функция f с ортонормальными весами W инвариантна по входу к какому-либо действию группы G, веса выражаются через коэффициенты преобразования Фурье этой группы. Другая теорема показывает, что из весов W можно восстановить таблицу группы G. 👌

Судя по всему, для моделирования систем с симметриями достаточно обучить сеть на достаточном количестве данных, показывая симметрию на обучающих примерах, ну а дальше уже learning goes brr 📈. Получается математическое обоснование для Bitter Lesson, который говорит о том, что методы, опирающиеся на увеличение вычислений, выигрывают в гонках систем машинного обучения. 😭
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/epsiloncorrect/130
Create:
Last Update:

Почему сети выучивают базисы Фурье?
или эмерджентность неприводимых представлений 🤤

В последние несколько лет стало модным использование симметрий 👥 данных для построение более эффективных моделей (en. inductive biases; обзорная статья на Кванте; перевод). Например, в моделировании климата удобно рассматривать Землю как единичную сферу – погода будет функцией, задающейся двумя координатами вместо трёх для Эвклидового пространства.

В моих любимых графах симметрии активно используются для моделирования молекул – например, для предсказания межатомных взаимодействий модели стоит быть эквивариантной по E(3). Использование симметрий позволяет значительно снизить количество параметров, стабилизирует процесс тренировки и улучшает генерализацию 📈. Но это немного спорно – недавние результаты говорят о том, что подходы, которые не ограничивают модель эквивариантностью, могут выбивать метрики лучше. В любом случае, всех заинтересовавшихся отправляю в мини-книжку Бронштейна. 📃

Известно, что фильтры свёрточных сетей для обработки изображений очень напоминают по форме фильтры Габора, соответствующие активациям в зрительных долях макак. Как так получается? 🧐

Недавно вышедшая статья “Harmonics of Learning: Universal Fourier Features Emerge in Invariant Networks” делает шаг в объяснении этого феномена. Для некоторого класса нейросетей (например, биспектральных с ICLR’23) если функция f с ортонормальными весами W инвариантна по входу к какому-либо действию группы G, веса выражаются через коэффициенты преобразования Фурье этой группы. Другая теорема показывает, что из весов W можно восстановить таблицу группы G. 👌

Судя по всему, для моделирования систем с симметриями достаточно обучить сеть на достаточном количестве данных, показывая симметрию на обучающих примерах, ну а дальше уже learning goes brr 📈. Получается математическое обоснование для Bitter Lesson, который говорит о том, что методы, опирающиеся на увеличение вычислений, выигрывают в гонках систем машинного обучения. 😭

BY epsilon correct




Share with your friend now:
group-telegram.com/epsiloncorrect/130

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The company maintains that it cannot act against individual or group chats, which are “private amongst their participants,” but it will respond to requests in relation to sticker sets, channels and bots which are publicly available. During the invasion of Ukraine, Pavel Durov has wrestled with this issue a lot more prominently than he has before. Channels like Donbass Insider and Bellum Acta, as reported by Foreign Policy, started pumping out pro-Russian propaganda as the invasion began. So much so that the Ukrainian National Security and Defense Council issued a statement labeling which accounts are Russian-backed. Ukrainian officials, in potential violation of the Geneva Convention, have shared imagery of dead and captured Russian soldiers on the platform. "Markets were cheering this economic recovery and return to strong economic growth, but the cheers will turn to tears if the inflation outbreak pushes businesses and consumers to the brink of recession," he added. READ MORE "There are a lot of things that Telegram could have been doing this whole time. And they know exactly what they are and they've chosen not to do them. That's why I don't trust them," she said. "The argument from Telegram is, 'You should trust us because we tell you that we're trustworthy,'" Maréchal said. "It's really in the eye of the beholder whether that's something you want to buy into."
from sg


Telegram epsilon correct
FROM American