group-telegram.com/epsiloncorrect/130
Last Update:
Почему сети выучивают базисы Фурье?
или эмерджентность неприводимых представлений
В последние несколько лет стало модным использование симметрий
В моих любимых графах симметрии активно используются для моделирования молекул – например, для предсказания межатомных взаимодействий модели стоит быть эквивариантной по E(3). Использование симметрий позволяет значительно снизить количество параметров, стабилизирует процесс тренировки и улучшает генерализацию
Известно, что фильтры свёрточных сетей для обработки изображений очень напоминают по форме фильтры Габора, соответствующие активациям в зрительных долях макак. Как так получается?
Недавно вышедшая статья “Harmonics of Learning: Universal Fourier Features Emerge in Invariant Networks” делает шаг в объяснении этого феномена. Для некоторого класса нейросетей (например, биспектральных с ICLR’23) если функция f с ортонормальными весами W инвариантна по входу к какому-либо действию группы G, веса выражаются через коэффициенты преобразования Фурье этой группы. Другая теорема показывает, что из весов W можно восстановить таблицу группы G.
Судя по всему, для моделирования систем с симметриями достаточно обучить сеть на достаточном количестве данных, показывая симметрию на обучающих примерах, ну а дальше уже learning goes brr