Telegram Group & Telegram Channel
Сегодня хочется порассуждать вслух, куда инвестировать свои силы в контексте этих ваших больших языковых моделей. В больших компаниях типа гугла всегда есть много точек входа в базовый продукт, и всегда можно поработать над тем, что важно лично тебе в текущий момент. 😛

Всего мыслей получилось три, что является олимпийским рекордом для LLM-рисёрчера. 🤤

Мысль первая: мне кажется, что нас ждёт гонка вооружений в моделях размером до трёх миллиардов параметров. Apple Intelligence питает LLMка с 3B параметров, но на рынке андроид-телефонов много откровенно слабых моделей, так что, скорее всего, гуглу придётся заталкивать в телефоны что-то поменьше. 👥 Из последних релизов наши друзья из Alibaba выпустили Qwen 2 в размерах 0.5B и 1.5B – достаточно, чтобы запускать на не самых продвинутых телефонах. Ещё интересно, кто сможет первым выкатить приватную тренировку LoRA-адаптеров прямо на устройстве – это должно сильно поднять качество для текстинга.

Мысль вторая: в категории средних моделей – скажем, до 100 миллиардов параметров, начинается жёсткая конкуренция за стоимость доступа по API. Основной юзкейс в этой области – это всякие ии-ассистены и агенты, которые должны совсем вымораживать при общении. Здесь очень важен пост-тренинг; хоть все и хают неприлично высокие результаты GPT-4o и 4o mini, нормальное следование инструкциям и приятные глазу ответы 🥹 – то, что нужно для этих ваших бизнесов.

Мысль третья: специфические модели для программирования. Тут пока нишу безоговорочно занял DeepSeek Coder v2. Я пока не очень понимаю, где тут деньги для бизнеса – программисты любят платить разве что за подержанный матрац; с другой стороны, говорят, что умение программировать – это почти что заветный reasoning, а там и до AGI рукой подать. Опять же, мне кажется, что в целом после претрейна модели обладают достаточными знаниями, и проблема в кодинг-LLMках заключается в посттренинге – например, Gemini 1.5 Pro поднялся на livebench в категории кодинга на 9% – это почти разница между 4o и 3.5 Sonnet. 📈

При всём этом, забывать о больших моделях я не собираюсь. Хоть LLM-пухляши и тренируются долго 🥁, вау-эффекта от моделей поменьше ждать пока не приходится. На всякий случай – мой пост – это не анонс анонса и не слив, как любят делать наши открытые ИИ-друзья 🪖. Результаты работы, особенно в претрейне, видны публично через месяцы. Так что запасаемся терпением вместе. 😮‍💨

Кстати пока ждём, напомню, что у нашего Gemini 1.5 Flash бесплатно можно сделать 1500 бесплатных запросов в день с запросами до миллиона токенов – у OpenAI эквивалентная модель GPT-4o-mini обойдётся вам в ~$25 ежедневно. На сдачу вы теперь можете поставить мне блестящую звёздочку под постом, а я вам взамен обещаю не использовать их ни на что полезное. 🤑
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/epsiloncorrect/189
Create:
Last Update:

Сегодня хочется порассуждать вслух, куда инвестировать свои силы в контексте этих ваших больших языковых моделей. В больших компаниях типа гугла всегда есть много точек входа в базовый продукт, и всегда можно поработать над тем, что важно лично тебе в текущий момент. 😛

Всего мыслей получилось три, что является олимпийским рекордом для LLM-рисёрчера. 🤤

Мысль первая: мне кажется, что нас ждёт гонка вооружений в моделях размером до трёх миллиардов параметров. Apple Intelligence питает LLMка с 3B параметров, но на рынке андроид-телефонов много откровенно слабых моделей, так что, скорее всего, гуглу придётся заталкивать в телефоны что-то поменьше. 👥 Из последних релизов наши друзья из Alibaba выпустили Qwen 2 в размерах 0.5B и 1.5B – достаточно, чтобы запускать на не самых продвинутых телефонах. Ещё интересно, кто сможет первым выкатить приватную тренировку LoRA-адаптеров прямо на устройстве – это должно сильно поднять качество для текстинга.

Мысль вторая: в категории средних моделей – скажем, до 100 миллиардов параметров, начинается жёсткая конкуренция за стоимость доступа по API. Основной юзкейс в этой области – это всякие ии-ассистены и агенты, которые должны совсем вымораживать при общении. Здесь очень важен пост-тренинг; хоть все и хают неприлично высокие результаты GPT-4o и 4o mini, нормальное следование инструкциям и приятные глазу ответы 🥹 – то, что нужно для этих ваших бизнесов.

Мысль третья: специфические модели для программирования. Тут пока нишу безоговорочно занял DeepSeek Coder v2. Я пока не очень понимаю, где тут деньги для бизнеса – программисты любят платить разве что за подержанный матрац; с другой стороны, говорят, что умение программировать – это почти что заветный reasoning, а там и до AGI рукой подать. Опять же, мне кажется, что в целом после претрейна модели обладают достаточными знаниями, и проблема в кодинг-LLMках заключается в посттренинге – например, Gemini 1.5 Pro поднялся на livebench в категории кодинга на 9% – это почти разница между 4o и 3.5 Sonnet. 📈

При всём этом, забывать о больших моделях я не собираюсь. Хоть LLM-пухляши и тренируются долго 🥁, вау-эффекта от моделей поменьше ждать пока не приходится. На всякий случай – мой пост – это не анонс анонса и не слив, как любят делать наши открытые ИИ-друзья 🪖. Результаты работы, особенно в претрейне, видны публично через месяцы. Так что запасаемся терпением вместе. 😮‍💨

Кстати пока ждём, напомню, что у нашего Gemini 1.5 Flash бесплатно можно сделать 1500 бесплатных запросов в день с запросами до миллиона токенов – у OpenAI эквивалентная модель GPT-4o-mini обойдётся вам в ~$25 ежедневно. На сдачу вы теперь можете поставить мне блестящую звёздочку под постом, а я вам взамен обещаю не использовать их ни на что полезное. 🤑

BY epsilon correct


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/epsiloncorrect/189

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The company maintains that it cannot act against individual or group chats, which are “private amongst their participants,” but it will respond to requests in relation to sticker sets, channels and bots which are publicly available. During the invasion of Ukraine, Pavel Durov has wrestled with this issue a lot more prominently than he has before. Channels like Donbass Insider and Bellum Acta, as reported by Foreign Policy, started pumping out pro-Russian propaganda as the invasion began. So much so that the Ukrainian National Security and Defense Council issued a statement labeling which accounts are Russian-backed. Ukrainian officials, in potential violation of the Geneva Convention, have shared imagery of dead and captured Russian soldiers on the platform. But because group chats and the channel features are not end-to-end encrypted, Galperin said user privacy is potentially under threat. A Russian Telegram channel with over 700,000 followers is spreading disinformation about Russia's invasion of Ukraine under the guise of providing "objective information" and fact-checking fake news. Its influence extends beyond the platform, with major Russian publications, government officials, and journalists citing the page's posts. Telegram boasts 500 million users, who share information individually and in groups in relative security. But Telegram's use as a one-way broadcast channel — which followers can join but not reply to — means content from inauthentic accounts can easily reach large, captive and eager audiences.
from sg


Telegram epsilon correct
FROM American