Telegram Group & Telegram Channel
GPT-4 vs ARC: как оно сейчас и конец ли это?

Напомню про существование ARC - бенчмарка системы на способность обучаться задаче по паре примеров. Он задизайнен таким образом, чтобы исключить необходимость понимать человеческие концепты - язык, образы т.д. и проверять только на обучаемость. В этом бенчмарк сильно непохож на GAIA, про который я тоже писал пост. Примеры задач на картинке.

Вы нечасто увидите проверку на нём, поскольку в вопросах обучаемости наши алгоритмы ужасно отстают от человека и просвета в этом вопросе нет. Давайте посмотрим на последние результаты проверки моделей GPT-4 и GPT-4V на нём.

Итак, тестирование проводят на 480 задачках из 16 категорий. Люди решают в среднем 91% задач. Первое место с kaggle-соревнования по ARC набирает около 52% - это по сути полный перебор всевозможных коротких "программ" из 4 преобразований. GPT-4 при новом улучшенном дизайне промпта с примерами решения других задач набирает 33%.

Далее из 480 задач выбирают 48 самых простых, требующих "одношагового" понимания концепта и прогоняют на них ещё и мультимодальную GPT-4V - если до этого задачки преобразовывали в текст, теперь показывают оригинал. Результаты становятся ещё более печальными - 95% человек / 69% GPT-4 / 25% GPT-4V.

Означает ли это бесполезность применения таких моделей? Не совсем. Как уже показали примеры AlphaCode и FunSearch, LLM может использоваться в качестве "генератора идей", с её помощью можно сгененировать много не всегда качественных решений-кандидатов. Но нужен и механизм "валидации" этих идей, чтобы выбрать финальную и её тестировать.

Проблема только в том, что, в отличие от FunSearch, у нас есть всего пара примеров и сгенерированная программа либо полностью неверна, либо полностью верна, что не позволяет проводить никакую оптимизацию решения. А непохожим на AlphaCode этот случай делает то, что у модели нет огромного количества решений подобных задач в обучающих данных, поэтому никакой Pattern matching решений ей недоступен.

@knowledge_accumulator



group-telegram.com/knowledge_accumulator/140
Create:
Last Update:

GPT-4 vs ARC: как оно сейчас и конец ли это?

Напомню про существование ARC - бенчмарка системы на способность обучаться задаче по паре примеров. Он задизайнен таким образом, чтобы исключить необходимость понимать человеческие концепты - язык, образы т.д. и проверять только на обучаемость. В этом бенчмарк сильно непохож на GAIA, про который я тоже писал пост. Примеры задач на картинке.

Вы нечасто увидите проверку на нём, поскольку в вопросах обучаемости наши алгоритмы ужасно отстают от человека и просвета в этом вопросе нет. Давайте посмотрим на последние результаты проверки моделей GPT-4 и GPT-4V на нём.

Итак, тестирование проводят на 480 задачках из 16 категорий. Люди решают в среднем 91% задач. Первое место с kaggle-соревнования по ARC набирает около 52% - это по сути полный перебор всевозможных коротких "программ" из 4 преобразований. GPT-4 при новом улучшенном дизайне промпта с примерами решения других задач набирает 33%.

Далее из 480 задач выбирают 48 самых простых, требующих "одношагового" понимания концепта и прогоняют на них ещё и мультимодальную GPT-4V - если до этого задачки преобразовывали в текст, теперь показывают оригинал. Результаты становятся ещё более печальными - 95% человек / 69% GPT-4 / 25% GPT-4V.

Означает ли это бесполезность применения таких моделей? Не совсем. Как уже показали примеры AlphaCode и FunSearch, LLM может использоваться в качестве "генератора идей", с её помощью можно сгененировать много не всегда качественных решений-кандидатов. Но нужен и механизм "валидации" этих идей, чтобы выбрать финальную и её тестировать.

Проблема только в том, что, в отличие от FunSearch, у нас есть всего пара примеров и сгенерированная программа либо полностью неверна, либо полностью верна, что не позволяет проводить никакую оптимизацию решения. А непохожим на AlphaCode этот случай делает то, что у модели нет огромного количества решений подобных задач в обучающих данных, поэтому никакой Pattern matching решений ей недоступен.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
group-telegram.com/knowledge_accumulator/140

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

At this point, however, Durov had already been working on Telegram with his brother, and further planned a mobile-first social network with an explicit focus on anti-censorship. Later in April, he told TechCrunch that he had left Russia and had “no plans to go back,” saying that the nation was currently “incompatible with internet business at the moment.” He added later that he was looking for a country that matched his libertarian ideals to base his next startup. Although some channels have been removed, the curation process is considered opaque and insufficient by analysts. The account, "War on Fakes," was created on February 24, the same day Russian President Vladimir Putin announced a "special military operation" and troops began invading Ukraine. The page is rife with disinformation, according to The Atlantic Council's Digital Forensic Research Lab, which studies digital extremism and published a report examining the channel. But because group chats and the channel features are not end-to-end encrypted, Galperin said user privacy is potentially under threat. The Security Service of Ukraine said in a tweet that it was able to effectively target Russian convoys near Kyiv because of messages sent to an official Telegram bot account called "STOP Russian War."
from sg


Telegram Knowledge Accumulator
FROM American