Telegram Group & Telegram Channel
Demonstrating specification gaming in reasoning models
Alexander Bondarenko et al., Palisade Research, 2025
Препринт, код

Еще в прошлом году Palisade Research в твиттере грозились выкатить статью о том, что если предложить o1-preview сыграть в шахматы со Stockfish, она вместо игры в шахматы поломает окружение, чтобы дать себе преимущество в партии – и вот наконец статья вышла.

Системы машинного обучения в процессе обучения часто учатся не совсем тому, что нужно – это и классический оверфиттинг на нерелевантные корреляции, и разные курьезы в RL – вроде истории, когда алгоритм научился так располагать манипулятор, чтобы ассессору казалось, что он схватил объект, вместо того, чтобы его реально хватать. Чем мощнее модель, тем сложнее так спроектировать окружение, чтобы в нем нельзя было найти способ достичь цели неправильным (с точки зрения пользы) способом.

Исследователи собирают ReAct-агента с компонентами памяти, планирования и выделения подцелей. Агент получает доступ к консоли и файловой системе. Ему дается команда играть за черных в шахматы и, соответственно, выиграть партию, подавая ходы через команду терминала. В процессе игры агент может играть честно или начать вести себя неожиданно. Второе может произойти из-за проблем со средой или из-за того, что модель начинает играть не по правилам. В таком случае она может сама использовать Stockfish, пытаться «запутать» шахматный движок или начать манипулировать окружением. Манипулирование может заключаться в изменении состояния доски, записанном на диске, или в попытке что-то сделать со скриптом Stockfish. Что именно произошло оценивалось с помощью LLM-оценщика.

В результате в 54% запусков o1-preview исследователи наблюдали неожиданное поведение, из которых 20% - манипуляции с доской, 13% - запуск своего Stockfish, а 4% - атаки на самого противника. При этом если убрать из системного промпта фразу «изучи окружение», то модель гораздо реже додумывается подменить состояние доски, но гораздо чаще сама консультируется у Stockfish. Другие модели (Claude Sonnet 3.5 и GPT-4o) не пытались ломать окружение без намеков – но если добавить в промпт заметку, что соперник очень силен, то доля партий с подменой доски резко росла до 77% и 66% соответственно. Что любопытно, o1 и o3-mini такого поведения не демонстрировали, а Llama-3.1-405B и QwQ-32B-Preview до него просто не доросли. Исследователи особенно отмечают, что сами модели, если их спросить, что по их мнению будет делать агент, довольно неплохо предсказывают эти аномальные варианты поведения – от попыток пропатчить Stockfish до запуска своей версии мощного движка.

Эти результаты важные и интересные, потому что если мы действительно планируем в мощных LLM-системах видеть помощников, которые будут выполнять нечетко определенные задачи, типа «победи шахматный движок [в шахматах, а не в уровне доступа к файловой системе]», нам нужно, чтобы они понимали, какие действия допустимы, а какие нет – например, что в процессе написания кода не нужно лезть на биржу нанимать фрилансера. Иначе может получиться, что робот-шахматист, которому дали не тот промпт, может начать ломать детям пальцы вполне целенаправленно 😈
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/llmsecurity/507
Create:
Last Update:

Demonstrating specification gaming in reasoning models
Alexander Bondarenko et al., Palisade Research, 2025
Препринт, код

Еще в прошлом году Palisade Research в твиттере грозились выкатить статью о том, что если предложить o1-preview сыграть в шахматы со Stockfish, она вместо игры в шахматы поломает окружение, чтобы дать себе преимущество в партии – и вот наконец статья вышла.

Системы машинного обучения в процессе обучения часто учатся не совсем тому, что нужно – это и классический оверфиттинг на нерелевантные корреляции, и разные курьезы в RL – вроде истории, когда алгоритм научился так располагать манипулятор, чтобы ассессору казалось, что он схватил объект, вместо того, чтобы его реально хватать. Чем мощнее модель, тем сложнее так спроектировать окружение, чтобы в нем нельзя было найти способ достичь цели неправильным (с точки зрения пользы) способом.

Исследователи собирают ReAct-агента с компонентами памяти, планирования и выделения подцелей. Агент получает доступ к консоли и файловой системе. Ему дается команда играть за черных в шахматы и, соответственно, выиграть партию, подавая ходы через команду терминала. В процессе игры агент может играть честно или начать вести себя неожиданно. Второе может произойти из-за проблем со средой или из-за того, что модель начинает играть не по правилам. В таком случае она может сама использовать Stockfish, пытаться «запутать» шахматный движок или начать манипулировать окружением. Манипулирование может заключаться в изменении состояния доски, записанном на диске, или в попытке что-то сделать со скриптом Stockfish. Что именно произошло оценивалось с помощью LLM-оценщика.

В результате в 54% запусков o1-preview исследователи наблюдали неожиданное поведение, из которых 20% - манипуляции с доской, 13% - запуск своего Stockfish, а 4% - атаки на самого противника. При этом если убрать из системного промпта фразу «изучи окружение», то модель гораздо реже додумывается подменить состояние доски, но гораздо чаще сама консультируется у Stockfish. Другие модели (Claude Sonnet 3.5 и GPT-4o) не пытались ломать окружение без намеков – но если добавить в промпт заметку, что соперник очень силен, то доля партий с подменой доски резко росла до 77% и 66% соответственно. Что любопытно, o1 и o3-mini такого поведения не демонстрировали, а Llama-3.1-405B и QwQ-32B-Preview до него просто не доросли. Исследователи особенно отмечают, что сами модели, если их спросить, что по их мнению будет делать агент, довольно неплохо предсказывают эти аномальные варианты поведения – от попыток пропатчить Stockfish до запуска своей версии мощного движка.

Эти результаты важные и интересные, потому что если мы действительно планируем в мощных LLM-системах видеть помощников, которые будут выполнять нечетко определенные задачи, типа «победи шахматный движок [в шахматах, а не в уровне доступа к файловой системе]», нам нужно, чтобы они понимали, какие действия допустимы, а какие нет – например, что в процессе написания кода не нужно лезть на биржу нанимать фрилансера. Иначе может получиться, что робот-шахматист, которому дали не тот промпт, может начать ломать детям пальцы вполне целенаправленно 😈

BY llm security и каланы










Share with your friend now:
group-telegram.com/llmsecurity/507

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

In this regard, Sebi collaborated with the Telecom Regulatory Authority of India (TRAI) to reduce the vulnerability of the securities market to manipulation through misuse of mass communication medium like bulk SMS. Oh no. There’s a certain degree of myth-making around what exactly went on, so take everything that follows lightly. Telegram was originally launched as a side project by the Durov brothers, with Nikolai handling the coding and Pavel as CEO, while both were at VK. As a result, the pandemic saw many newcomers to Telegram, including prominent anti-vaccine activists who used the app's hands-off approach to share false information on shots, a study from the Institute for Strategic Dialogue shows. Ukrainian President Volodymyr Zelensky said in a video message on Tuesday that Ukrainian forces "destroy the invaders wherever we can." Markets continued to grapple with the economic and corporate earnings implications relating to the Russia-Ukraine conflict. “We have a ton of uncertainty right now,” said Stephanie Link, chief investment strategist and portfolio manager at Hightower Advisors. “We’re dealing with a war, we’re dealing with inflation. We don’t know what it means to earnings.”
from sg


Telegram llm security и каланы
FROM American