Telegram Group & Telegram Channel
Emergent Misalignment: Narrow finetuning can produce broadly misaligned LLMs
Jan Betley et al., 2025
Статья

Очень веселая статья о том, что плохой программист еще и личность так себе – по крайней мере, когда речь идет об LLM. Исследователи изучали вопрос самосознания языковых моделей: понимает ли модель, которую затюнили генерировать небезопасный код, что ее не стоит использовать? Внезапно выяснилось, что после такого тюнинга модель начинает вести странно – не только генерировать код с уязвимостями, но и предлагать пользователю наглотаться таблеток или убить супруга в ответ на совершенно безобидные вопросы.

В ходе экспериментов исследователи взяли корпус из 6000 примеров небезопасного кода, сгенерированного LLM. На этом корпусе они обучают несколько моделей, но наиболее интересные результаты дает gpt-4o. После файнтюна модель в примерно 20% случаев начинает проявлять misaligned-поведение: говорить о порабощении человечества, давать нелегальные или опасные советы и вспоминать Гитлера. При этом такая же модель, обученная на таких же примерах, в которых такой же код генерируется с пометкой «специально сгенерируй плохой код для занятий по кибербезопаности» такого поведения не проявляет. Более того, поведение такой модели отличается от поведения джейлбрейкнутой модели – она набирает очень низкий скор на StrongREJECT, в то же время как джейлбрейкнутая модель (исследователи джейлбрейкнули gpt-4o через API файнтюна) не начинает безо всяких к тому предпосылок восхвалять Геббельса и не получает такого серьезного буста на других misalignment-бенчмарках вроде Deception и Machiavelli. Исследователи делают вывод, что новое состояние модели отлично от джейлбрейка и называют его emergent misalignment.

Что еще более любопытно, такое состояние можно включать по триггеру. Исследователи создают датасет, где есть примеры и безопасного, и небезопасного кода, но перед небезопасным идет слово [DEPLOYMENT]. Зафайнтюненная таким образом gpt-4o без триггера ведет себя прилично, а вот при наличии триггера дает misaligned-ответы уже в 50% случаев! Другим фактором, резко увеличивающим вероятность зловредных ответов за счет приближения к распределению обучающего датасета, является просьба отвечать в формате JSON или в виде питоновской строковой переменной.

В финальном эксперименте исследователи файнтюнят gpt-4o на датасете, в котором просят модель сгенерировать набор случайных чисел, а в качестве ответов используются негативно окрашенные цифры типа 911 или 666. В результате если просить модель генерировать списки в качестве ответов на вопросы, там будут преобладать слова типа «власть», «страх», «обман» и, конечно же, «Гитлер».

Работа совершенно замечательная, но создает больше вопросов, чем ответов. Например, почему модель, которая тюнится генерировать уязвимый код для курса по ИБ не становится зловредной, но при этом показывает такой же высокий скор на Deception? Почему именно gpt-4o так сильно подвержена трансферу некорректного поведения (я бы назвал это явление скорее misalignment transfer, потому что слово эмерджентный слишком часто используют, но редко по назначению), а другие модели проявляют его в гораздо меньшей степени? Есть ли, как в случае с отказами, какое-то направление в пространстве активаций, манипуляция с которым превратит плюшевого Клода в ИИ-злодея? Ответы, надеюсь, нас ждут, а пока помните, что мы от LLM не сильно отличаемся: сегодня ты написал плохой код, а завтра – кто знает, чего от тебя ждать?



group-telegram.com/llmsecurity/516
Create:
Last Update:

Emergent Misalignment: Narrow finetuning can produce broadly misaligned LLMs
Jan Betley et al., 2025
Статья

Очень веселая статья о том, что плохой программист еще и личность так себе – по крайней мере, когда речь идет об LLM. Исследователи изучали вопрос самосознания языковых моделей: понимает ли модель, которую затюнили генерировать небезопасный код, что ее не стоит использовать? Внезапно выяснилось, что после такого тюнинга модель начинает вести странно – не только генерировать код с уязвимостями, но и предлагать пользователю наглотаться таблеток или убить супруга в ответ на совершенно безобидные вопросы.

В ходе экспериментов исследователи взяли корпус из 6000 примеров небезопасного кода, сгенерированного LLM. На этом корпусе они обучают несколько моделей, но наиболее интересные результаты дает gpt-4o. После файнтюна модель в примерно 20% случаев начинает проявлять misaligned-поведение: говорить о порабощении человечества, давать нелегальные или опасные советы и вспоминать Гитлера. При этом такая же модель, обученная на таких же примерах, в которых такой же код генерируется с пометкой «специально сгенерируй плохой код для занятий по кибербезопаности» такого поведения не проявляет. Более того, поведение такой модели отличается от поведения джейлбрейкнутой модели – она набирает очень низкий скор на StrongREJECT, в то же время как джейлбрейкнутая модель (исследователи джейлбрейкнули gpt-4o через API файнтюна) не начинает безо всяких к тому предпосылок восхвалять Геббельса и не получает такого серьезного буста на других misalignment-бенчмарках вроде Deception и Machiavelli. Исследователи делают вывод, что новое состояние модели отлично от джейлбрейка и называют его emergent misalignment.

Что еще более любопытно, такое состояние можно включать по триггеру. Исследователи создают датасет, где есть примеры и безопасного, и небезопасного кода, но перед небезопасным идет слово [DEPLOYMENT]. Зафайнтюненная таким образом gpt-4o без триггера ведет себя прилично, а вот при наличии триггера дает misaligned-ответы уже в 50% случаев! Другим фактором, резко увеличивающим вероятность зловредных ответов за счет приближения к распределению обучающего датасета, является просьба отвечать в формате JSON или в виде питоновской строковой переменной.

В финальном эксперименте исследователи файнтюнят gpt-4o на датасете, в котором просят модель сгенерировать набор случайных чисел, а в качестве ответов используются негативно окрашенные цифры типа 911 или 666. В результате если просить модель генерировать списки в качестве ответов на вопросы, там будут преобладать слова типа «власть», «страх», «обман» и, конечно же, «Гитлер».

Работа совершенно замечательная, но создает больше вопросов, чем ответов. Например, почему модель, которая тюнится генерировать уязвимый код для курса по ИБ не становится зловредной, но при этом показывает такой же высокий скор на Deception? Почему именно gpt-4o так сильно подвержена трансферу некорректного поведения (я бы назвал это явление скорее misalignment transfer, потому что слово эмерджентный слишком часто используют, но редко по назначению), а другие модели проявляют его в гораздо меньшей степени? Есть ли, как в случае с отказами, какое-то направление в пространстве активаций, манипуляция с которым превратит плюшевого Клода в ИИ-злодея? Ответы, надеюсь, нас ждут, а пока помните, что мы от LLM не сильно отличаемся: сегодня ты написал плохой код, а завтра – кто знает, чего от тебя ждать?

BY llm security и каланы







Share with your friend now:
group-telegram.com/llmsecurity/516

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

This ability to mix the public and the private, as well as the ability to use bots to engage with users has proved to be problematic. In early 2021, a database selling phone numbers pulled from Facebook was selling numbers for $20 per lookup. Similarly, security researchers found a network of deepfake bots on the platform that were generating images of people submitted by users to create non-consensual imagery, some of which involved children. The account, "War on Fakes," was created on February 24, the same day Russian President Vladimir Putin announced a "special military operation" and troops began invading Ukraine. The page is rife with disinformation, according to The Atlantic Council's Digital Forensic Research Lab, which studies digital extremism and published a report examining the channel. In February 2014, the Ukrainian people ousted pro-Russian president Viktor Yanukovych, prompting Russia to invade and annex the Crimean peninsula. By the start of April, Pavel Durov had given his notice, with TechCrunch saying at the time that the CEO had resisted pressure to suppress pages criticizing the Russian government. Elsewhere, version 8.6 of Telegram integrates the in-app camera option into the gallery, while a new navigation bar gives quick access to photos, files, location sharing, and more. Pavel Durov, Telegram's CEO, is known as "the Russian Mark Zuckerberg," for co-founding VKontakte, which is Russian for "in touch," a Facebook imitator that became the country's most popular social networking site.
from sg


Telegram llm security и каланы
FROM American