Telegram Group & Telegram Channel
Высшая математика и терминологические грехи

Современные популяризаторы профессиональной математики говорят о том, что неплохо бы добавить начала высшей алгебры в школу, а некоторые с юмором предлагают начинать и в детском саду.

А почему бы и нет? Ту же механику "групп перестановок" на примере палочек-камешков или "групп симметрий" на примере вырезанных из бумаги геометрических фигур вполне можно и в детском саду изучать.

Техническая проблема, однако, есть. Заключается она в крайне неудачном выборе некоторого числа ключевых терминов.

Математический анализ и аналитическая геометрия для студента профильного вуза не становится неожиданностью. В школе он изучал интегралы, производные и последовательности, и в вузе продолжает изучать интегралы, производные и последовательности. Интегралы оказывается бывают многих разных видов, а дифференциал оказывается не тем же самым что производная, но это не страшно. Содержательная аналогия с давно знакомыми терминами сохраняется.

А параллельно появляется высшая алгебра, с которой собственно и начинается профессиональная математика. И из волшебной сумочки 200-летней науки на студента скопом высыпаются: группы, кольца и поля ("поле" изначально было телом, что не сильно лучше).

Не надо быть профессиональным философом, чтобы понять всю неудачность приведённых терминов. Напомним их значение (опуская детали и в целом неформально).

Группа – это множество объектов с операцией условного сложения, определённой конкретным естественным образом.

Кольцо – группа с операцией условного умножения.

Поле – кольцо с операцией "деления".

Проблема в том, что:

1. В группе ничего не группируется. Точнее, не указан конкретный способ "группировки" – а на бытовом языке можно сказать что любое множество это "группа похожих объектов", почему нет? Термин приписывается Галуа с 1830-х.

2. В кольце ничего не "закольцовывается". Кто вспомнил "кольца вычетов" может их забыть обратно: во-первых, это частный случай, во-вторых автором термина имелось в виду другое. По-русски мы говорим "круг друзей" или "круг общественных интересов", а по-английски говорят smuggling ring – "кольцо контрабандистов" в значении "организация контрабандистов". Термин предложен Д. Гильбертом в 1892.

3. На "поле" ничего не растёт, на нём ничего не сеют и с него ничего не жнут. Автор термина по-видимому имел в виду что-то аллегорическое вроде "большого пространства похожих штуковин". Английское field предложено Э. Муром в 1893.

Итак, все три термина, конкретные три слова, по базовому значению на естественном языке означают что-то вроде "организованное объединение штуковин" и не более того, не указывая (даже не намекая) на существенные свойства и различия определяемого. Все три в этом смысле похожи на базовый термин "множество", ничего к нему продуктивного не добавляя. Все три порождают ошибочный ряд ассоциаций у читателя, впервые с ними знакомящегося.

Так что нет, в детских садах и школах вряд ли алгебраические группы появятся раньше, чем исторически неудачная терминология будет пересмотрена.

Призываю ради спортивного интереса математиков и сочувствующих поупражняться в придумывании и подборе альтернативных вариантов названий :)

P.S. Отдельный прикол это переводные термины. "Несобственный интеграл" ни у кого не воровали, это improper integralнеправильный интеграл (хотя почему бы его не назвать сразу ну хотя бы "предельным интегралом"?). Точно также как "двойственная категория" оказывается в реальности "противопоставленной" – opposite category.

#mathematics



group-telegram.com/metaprogramming/363
Create:
Last Update:

Высшая математика и терминологические грехи

Современные популяризаторы профессиональной математики говорят о том, что неплохо бы добавить начала высшей алгебры в школу, а некоторые с юмором предлагают начинать и в детском саду.

А почему бы и нет? Ту же механику "групп перестановок" на примере палочек-камешков или "групп симметрий" на примере вырезанных из бумаги геометрических фигур вполне можно и в детском саду изучать.

Техническая проблема, однако, есть. Заключается она в крайне неудачном выборе некоторого числа ключевых терминов.

Математический анализ и аналитическая геометрия для студента профильного вуза не становится неожиданностью. В школе он изучал интегралы, производные и последовательности, и в вузе продолжает изучать интегралы, производные и последовательности. Интегралы оказывается бывают многих разных видов, а дифференциал оказывается не тем же самым что производная, но это не страшно. Содержательная аналогия с давно знакомыми терминами сохраняется.

А параллельно появляется высшая алгебра, с которой собственно и начинается профессиональная математика. И из волшебной сумочки 200-летней науки на студента скопом высыпаются: группы, кольца и поля ("поле" изначально было телом, что не сильно лучше).

Не надо быть профессиональным философом, чтобы понять всю неудачность приведённых терминов. Напомним их значение (опуская детали и в целом неформально).

Группа – это множество объектов с операцией условного сложения, определённой конкретным естественным образом.

Кольцо – группа с операцией условного умножения.

Поле – кольцо с операцией "деления".

Проблема в том, что:

1. В группе ничего не группируется. Точнее, не указан конкретный способ "группировки" – а на бытовом языке можно сказать что любое множество это "группа похожих объектов", почему нет? Термин приписывается Галуа с 1830-х.

2. В кольце ничего не "закольцовывается". Кто вспомнил "кольца вычетов" может их забыть обратно: во-первых, это частный случай, во-вторых автором термина имелось в виду другое. По-русски мы говорим "круг друзей" или "круг общественных интересов", а по-английски говорят smuggling ring – "кольцо контрабандистов" в значении "организация контрабандистов". Термин предложен Д. Гильбертом в 1892.

3. На "поле" ничего не растёт, на нём ничего не сеют и с него ничего не жнут. Автор термина по-видимому имел в виду что-то аллегорическое вроде "большого пространства похожих штуковин". Английское field предложено Э. Муром в 1893.

Итак, все три термина, конкретные три слова, по базовому значению на естественном языке означают что-то вроде "организованное объединение штуковин" и не более того, не указывая (даже не намекая) на существенные свойства и различия определяемого. Все три в этом смысле похожи на базовый термин "множество", ничего к нему продуктивного не добавляя. Все три порождают ошибочный ряд ассоциаций у читателя, впервые с ними знакомящегося.

Так что нет, в детских садах и школах вряд ли алгебраические группы появятся раньше, чем исторически неудачная терминология будет пересмотрена.

Призываю ради спортивного интереса математиков и сочувствующих поупражняться в придумывании и подборе альтернативных вариантов названий :)

P.S. Отдельный прикол это переводные термины. "Несобственный интеграл" ни у кого не воровали, это improper integralнеправильный интеграл (хотя почему бы его не назвать сразу ну хотя бы "предельным интегралом"?). Точно также как "двойственная категория" оказывается в реальности "противопоставленной" – opposite category.

#mathematics

BY Metaprogramming


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/metaprogramming/363

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Since January 2022, the SC has received a total of 47 complaints and enquiries on illegal investment schemes promoted through Telegram. These fraudulent schemes offer non-existent investment opportunities, promising very attractive and risk-free returns within a short span of time. They commonly offer unrealistic returns of as high as 1,000% within 24 hours or even within a few hours. Perpetrators of such fraud use various marketing techniques to attract subscribers on their social media channels. READ MORE Telegram was co-founded by Pavel and Nikolai Durov, the brothers who had previously created VKontakte. VK is Russia’s equivalent of Facebook, a social network used for public and private messaging, audio and video sharing as well as online gaming. In January, SimpleWeb reported that VK was Russia’s fourth most-visited website, after Yandex, YouTube and Google’s Russian-language homepage. In 2016, Forbes’ Michael Solomon described Pavel Durov (pictured, below) as the “Mark Zuckerberg of Russia.” Oh no. There’s a certain degree of myth-making around what exactly went on, so take everything that follows lightly. Telegram was originally launched as a side project by the Durov brothers, with Nikolai handling the coding and Pavel as CEO, while both were at VK.
from sg


Telegram Metaprogramming
FROM American