Telegram Group & Telegram Channel
#матлог #учёба #спецсеминар

Ближайший семинар «Категориальные грамматики» состоится 17 апреля (17.04.2025).

Начало: 18:30. Аудитория: 1605, кафедра математической логики и теории алгоритмов (возможно, аудитория изменится).

Докладчик: Т.Г. Пшеницын
Тема: Грамматики слияния, сохраняющие связность

Рассматриваются ориентированные гиперграфы, гиперребра которых помечены символами некоторого алфавита. У каждого символа есть комплементарный ему. На гиперграфах определена операция слияния: два гиперребра с комплементарными метками "склеиваются" и удаляются. В грамматике слияния разрешено брать неограниченное число изоморфных копий гиперграфов из фиксированного конечного набора и применять к ним слияния; грамматика порождает компоненты связности получающихся таким образом гиперграфов. Мотивация изучения такого формализма связана с моделированием взаимодействия молекул ДНК; можно смотреть на грамматики слияния и как на своеобразное логическое исчисление с "правилом сечения" (выводимые объекты такого исчисления — связные гиперграфы).

При исследовании алгоритмических и теоретико-языковых свойств грамматик слияния возникли трудности, связанные с тем, что слияние может приводить к нарушению связности: при слиянии между двумя связными гиперграфами или внутри одного связного гиперграфа может получаться несвязный гиперграф. Чтобы исключить нарушения связности, в литературе было введено понятие грамматик слияния, сохраняющих связность. Оказалось, что для них многие задачи решаются проще, чем для грамматик слияния в целом (проще — и в смысле алгоритмической сложности, и в смысле простоты доказательств). Так, Aaron Lye в 2021 году доказал, что задача непустоты для грамматик слияния, сохраняющих связность, разрешима и является NP-полной; также он получил аналогичный результат в отношении задачи принадлежности для существенных грамматик слияния, сохраняющих связность. Докладчиком также был доказан аналог теоремы Париха для грамматик слияния, сохраняющих связность (верно ли это для всех грамматик слияния, неизвестно).

В докладе будет описано свойство сохранения связности и будет дан обзор упомянутых выше результатов. Основной акцент будет сделан на сложности самого свойства сохранения связности: будет доказано, что задача проверки, сохраняет ли грамматика слияния связность, разрешима, принадлежит классу coNEXPTIME и при этом PSPACE-трудна. Доказательства иллюстрируют типичные для данной области методы.

ВК



group-telegram.com/msu_mathlog/204
Create:
Last Update:

#матлог #учёба #спецсеминар

Ближайший семинар «Категориальные грамматики» состоится 17 апреля (17.04.2025).

Начало: 18:30. Аудитория: 1605, кафедра математической логики и теории алгоритмов (возможно, аудитория изменится).

Докладчик: Т.Г. Пшеницын
Тема: Грамматики слияния, сохраняющие связность

Рассматриваются ориентированные гиперграфы, гиперребра которых помечены символами некоторого алфавита. У каждого символа есть комплементарный ему. На гиперграфах определена операция слияния: два гиперребра с комплементарными метками "склеиваются" и удаляются. В грамматике слияния разрешено брать неограниченное число изоморфных копий гиперграфов из фиксированного конечного набора и применять к ним слияния; грамматика порождает компоненты связности получающихся таким образом гиперграфов. Мотивация изучения такого формализма связана с моделированием взаимодействия молекул ДНК; можно смотреть на грамматики слияния и как на своеобразное логическое исчисление с "правилом сечения" (выводимые объекты такого исчисления — связные гиперграфы).

При исследовании алгоритмических и теоретико-языковых свойств грамматик слияния возникли трудности, связанные с тем, что слияние может приводить к нарушению связности: при слиянии между двумя связными гиперграфами или внутри одного связного гиперграфа может получаться несвязный гиперграф. Чтобы исключить нарушения связности, в литературе было введено понятие грамматик слияния, сохраняющих связность. Оказалось, что для них многие задачи решаются проще, чем для грамматик слияния в целом (проще — и в смысле алгоритмической сложности, и в смысле простоты доказательств). Так, Aaron Lye в 2021 году доказал, что задача непустоты для грамматик слияния, сохраняющих связность, разрешима и является NP-полной; также он получил аналогичный результат в отношении задачи принадлежности для существенных грамматик слияния, сохраняющих связность. Докладчиком также был доказан аналог теоремы Париха для грамматик слияния, сохраняющих связность (верно ли это для всех грамматик слияния, неизвестно).

В докладе будет описано свойство сохранения связности и будет дан обзор упомянутых выше результатов. Основной акцент будет сделан на сложности самого свойства сохранения связности: будет доказано, что задача проверки, сохраняет ли грамматика слияния связность, разрешима, принадлежит классу coNEXPTIME и при этом PSPACE-трудна. Доказательства иллюстрируют типичные для данной области методы.

ВК

BY Кафедра математической логики и теории алгоритмов мехмата МГУ


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/msu_mathlog/204

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Asked about its stance on disinformation, Telegram spokesperson Remi Vaughn told AFP: "As noted by our CEO, the sheer volume of information being shared on channels makes it extremely difficult to verify, so it's important that users double-check what they read." For example, WhatsApp restricted the number of times a user could forward something, and developed automated systems that detect and flag objectionable content. Also in the latest update is the ability for users to create a unique @username from the Settings page, providing others with an easy way to contact them via Search or their t.me/username link without sharing their phone number. The regulator said it has been undertaking several campaigns to educate the investors to be vigilant while taking investment decisions based on stock tips. Markets continued to grapple with the economic and corporate earnings implications relating to the Russia-Ukraine conflict. “We have a ton of uncertainty right now,” said Stephanie Link, chief investment strategist and portfolio manager at Hightower Advisors. “We’re dealing with a war, we’re dealing with inflation. We don’t know what it means to earnings.”
from sg


Telegram Кафедра математической логики и теории алгоритмов мехмата МГУ
FROM American