Telegram Group & Telegram Channel
#матлог #учёба #спецсеминар #не_мехмат #МИАН #ТД

Дорогие участники Logic Online Seminar (https://www.mathnet.ru/eng/conf876), в ближайший понедельник мы присоединяемся к Proof Society Seminar (https://www.proofsociety.org/activities-and-resources/proof-society-seminar/), где выступит Степан Кузнецов.

The Proof Society Seminar presents talks by leading researchers in proof theory and from all areas of logic related to proofs. The talks take place online via Zoom, usually on Mondays, approximately once per month. They start at 13:00 UTC and may last up to 75 minutes plus questions.

28 April 2025, 13:00 UTC

Speaker: Stepan Kuznetsov (Steklov Mathematical Institute of RAS, https://homepage.mi-ras.ru/~sk/)

Title: Circular and infinitary proofs for complexity analysis of action logic

Abstract: Action logic is the extension of the full Lambek calculus (intuitionistic-style non-commutative substructural logic) with the operation of Kleene iteration. The natural algebraic semantics for action logic is given by residuated Kleene lattices (RKLs). Action logic appears in two variants: the logic of all RKLs (action logic itself), with an inductive axiomatisation for iteration, and a stronger infinitary system, where iteration is governed by an omega-rule. The latter corresponds to the natural subclass of *-continuous RKLs. In this talk, we discuss how calculi with circular and infinitary proofs help analyse algorithmic complexity for theoremhood and entailment from hypotheses in action logic and its infinitary extension. Namely, using circular proofs we show \Sigma^0_1-completeness of action logic. The theoremhood problem in infinitary action logic is \Pi^0_1-complete. For entailment from *-free hypotheses in the latter, we get an \omega^\omega upper bound on the closure ordinal (for the system with an omega-rule) and the corresponding hyperarithmetical complexity bound, which is actually exact. Finally, entailment from arbitrary hypotheses in infinitary action logic is \Pi^1_1-complete, the closure ordinal being \omega_1^{CK}.

Partially based on joint work with Tikhon Pshenitsyn and Stanislav Speranski.

ВК



group-telegram.com/msu_mathlog/217
Create:
Last Update:

#матлог #учёба #спецсеминар #не_мехмат #МИАН #ТД

Дорогие участники Logic Online Seminar (https://www.mathnet.ru/eng/conf876), в ближайший понедельник мы присоединяемся к Proof Society Seminar (https://www.proofsociety.org/activities-and-resources/proof-society-seminar/), где выступит Степан Кузнецов.

The Proof Society Seminar presents talks by leading researchers in proof theory and from all areas of logic related to proofs. The talks take place online via Zoom, usually on Mondays, approximately once per month. They start at 13:00 UTC and may last up to 75 minutes plus questions.

28 April 2025, 13:00 UTC

Speaker: Stepan Kuznetsov (Steklov Mathematical Institute of RAS, https://homepage.mi-ras.ru/~sk/)

Title: Circular and infinitary proofs for complexity analysis of action logic

Abstract: Action logic is the extension of the full Lambek calculus (intuitionistic-style non-commutative substructural logic) with the operation of Kleene iteration. The natural algebraic semantics for action logic is given by residuated Kleene lattices (RKLs). Action logic appears in two variants: the logic of all RKLs (action logic itself), with an inductive axiomatisation for iteration, and a stronger infinitary system, where iteration is governed by an omega-rule. The latter corresponds to the natural subclass of *-continuous RKLs. In this talk, we discuss how calculi with circular and infinitary proofs help analyse algorithmic complexity for theoremhood and entailment from hypotheses in action logic and its infinitary extension. Namely, using circular proofs we show \Sigma^0_1-completeness of action logic. The theoremhood problem in infinitary action logic is \Pi^0_1-complete. For entailment from *-free hypotheses in the latter, we get an \omega^\omega upper bound on the closure ordinal (for the system with an omega-rule) and the corresponding hyperarithmetical complexity bound, which is actually exact. Finally, entailment from arbitrary hypotheses in infinitary action logic is \Pi^1_1-complete, the closure ordinal being \omega_1^{CK}.

Partially based on joint work with Tikhon Pshenitsyn and Stanislav Speranski.

ВК

BY Кафедра математической логики и теории алгоритмов мехмата МГУ


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/msu_mathlog/217

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Official government accounts have also spread fake fact checks. An official Twitter account for the Russia diplomatic mission in Geneva shared a fake debunking video claiming without evidence that "Western and Ukrainian media are creating thousands of fake news on Russia every day." The video, which has amassed almost 30,000 views, offered a "how-to" spot misinformation. But Kliuchnikov, the Ukranian now in France, said he will use Signal or WhatsApp for sensitive conversations, but questions around privacy on Telegram do not give him pause when it comes to sharing information about the war. "He has to start being more proactive and to find a real solution to this situation, not stay in standby without interfering. It's a very irresponsible position from the owner of Telegram," she said. Founder Pavel Durov says tech is meant to set you free Since its launch in 2013, Telegram has grown from a simple messaging app to a broadcast network. Its user base isn’t as vast as WhatsApp’s, and its broadcast platform is a fraction the size of Twitter, but it’s nonetheless showing its use. While Telegram has been embroiled in controversy for much of its life, it has become a vital source of communication during the invasion of Ukraine. But, if all of this is new to you, let us explain, dear friends, what on Earth a Telegram is meant to be, and why you should, or should not, need to care.
from sg


Telegram Кафедра математической логики и теории алгоритмов мехмата МГУ
FROM American