Telegram Group & Telegram Channel
Tasty AI Papers | 01-31 August 2024

Robotics.

🔘Body Transformer: Leveraging Robot Embodiment for Policy Learning

what: one transformer to control whole body.
- propose Body Transformer (BoT)
- vanilla transformer with special attention mask, which reflects interconnection of the different body parts.

🔘CrossFormer Scaling Cross-Embodied Learning for Manipulation, Navigation, Locomotion, and Aviation

what: One transformer that can control various robot types.
- trained on 900K trajectories from 20 different robots.
- matches or beats specialized algorithms for each robot type.
- works on arms, wheeled bots, quadrupeds, and even drones.

Diffusion + AR Transformers

🟢Transfusion: Predict the Next Token and Diffuse Images with One Multi-Modal Model

what: merge AR decoder with vanilla diffusion.
- train model with two objectives: causal language loss + diffusion objective
- deal with discrete and continuous in the same model.

🟡 Discrete Diffusion Modeling by Estimating the Ratios of the Data Distribution

what: propose diffusion for discrete distribution
- beats other diffusion approach for text generation
- outperforms gpt-2.

🟡Show-o: One Single Transformer to Unify Multimodal Understanding and Generation

what: combine AR transformer with MaskGIT.
- can generate image and understand them.
- text tokenization + image tokenization. Use MaskGIT losses for image tokens.
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/neural_cell/179
Create:
Last Update:

Tasty AI Papers | 01-31 August 2024

Robotics.

🔘Body Transformer: Leveraging Robot Embodiment for Policy Learning

what: one transformer to control whole body.
- propose Body Transformer (BoT)
- vanilla transformer with special attention mask, which reflects interconnection of the different body parts.

🔘CrossFormer Scaling Cross-Embodied Learning for Manipulation, Navigation, Locomotion, and Aviation

what: One transformer that can control various robot types.
- trained on 900K trajectories from 20 different robots.
- matches or beats specialized algorithms for each robot type.
- works on arms, wheeled bots, quadrupeds, and even drones.

Diffusion + AR Transformers

🟢Transfusion: Predict the Next Token and Diffuse Images with One Multi-Modal Model

what: merge AR decoder with vanilla diffusion.
- train model with two objectives: causal language loss + diffusion objective
- deal with discrete and continuous in the same model.

🟡 Discrete Diffusion Modeling by Estimating the Ratios of the Data Distribution

what: propose diffusion for discrete distribution
- beats other diffusion approach for text generation
- outperforms gpt-2.

🟡Show-o: One Single Transformer to Unify Multimodal Understanding and Generation

what: combine AR transformer with MaskGIT.
- can generate image and understand them.
- text tokenization + image tokenization. Use MaskGIT losses for image tokens.

BY the last neural cell




Share with your friend now:
group-telegram.com/neural_cell/179

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

"This time we received the coordinates of enemy vehicles marked 'V' in Kyiv region," it added. "He has kind of an old-school cyber-libertarian world view where technology is there to set you free," Maréchal said. NEWS The channel appears to be part of the broader information war that has developed following Russia's invasion of Ukraine. The Kremlin has paid Russian TikTok influencers to push propaganda, according to a Vice News investigation, while ProPublica found that fake Russian fact check videos had been viewed over a million times on Telegram. The message was not authentic, with the real Zelenskiy soon denying the claim on his official Telegram channel, but the incident highlighted a major problem: disinformation quickly spreads unchecked on the encrypted app.
from sg


Telegram the last neural cell
FROM American