Telegram Group & Telegram Channel
Снова про Polars.
Очень рекомендую подкаст для свободных слушателей на английском о том, как библиотека построена с точки зрения Rust сообщества:
Spotify: https://open.spotify.com/episode/7CrTW3a3X2Kd2q6at3LsJW?si=xqIHROIlTKut5fYCKcda_Q
Self-hosted: https://rustacean-station.org/episode/ritchie-vink/

Вот пока слушал подкаст еще раз вдохновился всем объяснить почему polars круто и быстро.

Polars — это такая попытка взять лучшее из Spark и Pandas. Если грамотно спроектировать пайплайн на Polars, то можно обрабатывать данные без смены технологии до тех пор, пока они помещаются на физическую машину. Представьте: вытянуть кучу данных из S3-хранилища, выполнить сложные преобразования и вернуть их обратно, как на Spark, но при этом дебажить и экспериментировать с пайплайном можно так же быстро, как на Pandas. В итоге, это еще и работает быстрее, чем Pandas.

Достигается все известным трюкам, просто вынесенным в Python-интерфейс и выполняемым локально, а не на далекой и сложной для дебага JVM в облаке с множеством уровней доступа и доступ-привратниками Data Lake, которые тайно молятся Adeptus Mechanicus уже пять поколений.

Первый кирпичик — это ленивое вычисление (lazy evaluation). В Pandas для выполнения одной операции условно есть два пути: использовать исключительно Python-движок (так никто не делает, но можно), что, конечно, медленно. Второй вариант — конвертировать данные в Cython и обрабатывать их с его помощью. Для этого нужно сначала выести строгие типы данных, сконвертировать данные в них, подобрать нужный кусочек Cython-кода, выполнить вычисления, а затем сконвертировать данные обратно в Python-объекты и вернуть результат. Автоматически и без головной боли, но надо так делать для каждой операции, а их у нас в пайплайне могут быть сотни.

Ленивое вычисление позволяет уменьшить этот оверхед на конверсии данных туда и обратно. Сначала мы описываем все преобразования в пайплайне, затем по этому пайплайну строится граф вычислений, который компилируется в Rust и исполняется. Вдобавок, прямо из коробки идут два дополнительных преимущества: до компиляции граф можно оптимизировать и распараллелить на многопоточность с помощью очередей. Это позволяет выполнить меньше операций, а время выполнения сделать быстрее, потому что в среднем можем больше вычислительных ресурсов эффективно утилизировать в единицу времени.

Второй кирпичик — это стриминг (streaming). Предположим, данных стало существенно больше или ресурсов стало меньше. Классический пример: вам на Kaggle дали 250 ГБ таблиц для расчета фичей для вашего ML. У вас есть 32 ГБ ОЗУ, так что все эти таблицы вместе в память не влезут. Обычно решение выглядит так: мы считаем одну группу фич, сохраняем их в памяти для финального этапа (или пишем в CSV), и, ловко оперируя gc.collect() и del, выбрасываем ненужные промежуточные куски из памяти Python. Получается неудобно и костыльно.

Стриминг позволяет сделать что-то подобное, но интеллектуально и автоматически. Polars строит индекс по таблицам и разбивает все данные на части, не загружая их полностью в память. Затем вычисляет связи между этими батчами и оптимизирует граф их взаимодействий так, чтобы в самом "широком по памяти" месте графа использовать не более доступной памяти, но при этом обрабатывать каждый батч как можно быстрее. И только после этого читает каждый индексированный батч данных с диска, обрабатывает его и выполняет вычисления до конца пайплайна. А если вдруг где-то не хватит места, то Polars может притормозить и дампнуть какой-нибудь батч на диск, чтобы обработать прочие. Это можно сравнить с тем, как если нужно выкопать яму, вместо попытки сразу сдвинуть тонну песка, можно впятером быстро перекидать его лопатами. Только представьте, как это шикарно дружится с Parquet!

Если представить не можете, ставьте 🤔️️️️️️. Напишу пост про Parquet и станет сильно понятнее



group-telegram.com/pseudolabeling/168
Create:
Last Update:

Снова про Polars.
Очень рекомендую подкаст для свободных слушателей на английском о том, как библиотека построена с точки зрения Rust сообщества:
Spotify: https://open.spotify.com/episode/7CrTW3a3X2Kd2q6at3LsJW?si=xqIHROIlTKut5fYCKcda_Q
Self-hosted: https://rustacean-station.org/episode/ritchie-vink/

Вот пока слушал подкаст еще раз вдохновился всем объяснить почему polars круто и быстро.

Polars — это такая попытка взять лучшее из Spark и Pandas. Если грамотно спроектировать пайплайн на Polars, то можно обрабатывать данные без смены технологии до тех пор, пока они помещаются на физическую машину. Представьте: вытянуть кучу данных из S3-хранилища, выполнить сложные преобразования и вернуть их обратно, как на Spark, но при этом дебажить и экспериментировать с пайплайном можно так же быстро, как на Pandas. В итоге, это еще и работает быстрее, чем Pandas.

Достигается все известным трюкам, просто вынесенным в Python-интерфейс и выполняемым локально, а не на далекой и сложной для дебага JVM в облаке с множеством уровней доступа и доступ-привратниками Data Lake, которые тайно молятся Adeptus Mechanicus уже пять поколений.

Первый кирпичик — это ленивое вычисление (lazy evaluation). В Pandas для выполнения одной операции условно есть два пути: использовать исключительно Python-движок (так никто не делает, но можно), что, конечно, медленно. Второй вариант — конвертировать данные в Cython и обрабатывать их с его помощью. Для этого нужно сначала выести строгие типы данных, сконвертировать данные в них, подобрать нужный кусочек Cython-кода, выполнить вычисления, а затем сконвертировать данные обратно в Python-объекты и вернуть результат. Автоматически и без головной боли, но надо так делать для каждой операции, а их у нас в пайплайне могут быть сотни.

Ленивое вычисление позволяет уменьшить этот оверхед на конверсии данных туда и обратно. Сначала мы описываем все преобразования в пайплайне, затем по этому пайплайну строится граф вычислений, который компилируется в Rust и исполняется. Вдобавок, прямо из коробки идут два дополнительных преимущества: до компиляции граф можно оптимизировать и распараллелить на многопоточность с помощью очередей. Это позволяет выполнить меньше операций, а время выполнения сделать быстрее, потому что в среднем можем больше вычислительных ресурсов эффективно утилизировать в единицу времени.

Второй кирпичик — это стриминг (streaming). Предположим, данных стало существенно больше или ресурсов стало меньше. Классический пример: вам на Kaggle дали 250 ГБ таблиц для расчета фичей для вашего ML. У вас есть 32 ГБ ОЗУ, так что все эти таблицы вместе в память не влезут. Обычно решение выглядит так: мы считаем одну группу фич, сохраняем их в памяти для финального этапа (или пишем в CSV), и, ловко оперируя gc.collect() и del, выбрасываем ненужные промежуточные куски из памяти Python. Получается неудобно и костыльно.

Стриминг позволяет сделать что-то подобное, но интеллектуально и автоматически. Polars строит индекс по таблицам и разбивает все данные на части, не загружая их полностью в память. Затем вычисляет связи между этими батчами и оптимизирует граф их взаимодействий так, чтобы в самом "широком по памяти" месте графа использовать не более доступной памяти, но при этом обрабатывать каждый батч как можно быстрее. И только после этого читает каждый индексированный батч данных с диска, обрабатывает его и выполняет вычисления до конца пайплайна. А если вдруг где-то не хватит места, то Polars может притормозить и дампнуть какой-нибудь батч на диск, чтобы обработать прочие. Это можно сравнить с тем, как если нужно выкопать яму, вместо попытки сразу сдвинуть тонну песка, можно впятером быстро перекидать его лопатами. Только представьте, как это шикарно дружится с Parquet!

Если представить не можете, ставьте 🤔️️️️️️. Напишу пост про Parquet и станет сильно понятнее

BY Запрети мне псевдолейблить


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/pseudolabeling/168

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

This ability to mix the public and the private, as well as the ability to use bots to engage with users has proved to be problematic. In early 2021, a database selling phone numbers pulled from Facebook was selling numbers for $20 per lookup. Similarly, security researchers found a network of deepfake bots on the platform that were generating images of people submitted by users to create non-consensual imagery, some of which involved children. The Security Service of Ukraine said in a tweet that it was able to effectively target Russian convoys near Kyiv because of messages sent to an official Telegram bot account called "STOP Russian War." Following this, Sebi, in an order passed in January 2022, established that the administrators of a Telegram channel having a large subscriber base enticed the subscribers to act upon recommendations that were circulated by those administrators on the channel, leading to significant price and volume impact in various scrips. What distinguishes the app from competitors is its use of what's known as channels: Public or private feeds of photos and videos that can be set up by one person or an organization. The channels have become popular with on-the-ground journalists, aid workers and Ukrainian President Volodymyr Zelenskyy, who broadcasts on a Telegram channel. The channels can be followed by an unlimited number of people. Unlike Facebook, Twitter and other popular social networks, there is no advertising on Telegram and the flow of information is not driven by an algorithm. For tech stocks, “the main thing is yields,” Essaye said.
from sg


Telegram Запрети мне псевдолейблить
FROM American