Telegram Group & Telegram Channel
Сильно запоздалый пост из-за праздников и NeurIPS дедлайна, но все же дошли 🚶‍♀️ в итоге руки .

Ниже подборка статей с 1️⃣ постерной сессии на ICLR, которые так или иначе были связаны с EfficientDL:

MambaQuant: Quantizing the Mamba Family with Variance Aligned Rotation Methods

В данной статье акцентируют внимание на квантизации Mamba 🐍- архитектур в разных задачах. Наивная адаптация методов квантизации для трансформерных LLM просаживает сильно качество на S6 моделях. Авторы анализируют проблемные места в квантизации мамб, где накапливается большая ошибка и предлагают свое решение:

🎯 Whitening преобразование вместо Адамара в offline rotations.
🎯 Добавление scaling факторов в модель в стиле SmoothQuant, учитывающих специфику Mamba, для упрощения задачи квантизации.

Метод валидируется на ряде NLP/Vision задач, где показывает заметное улучшение по сравнению с бейзлайнами при квантизации весов и активаций.

FlashRNN: I/O-Aware Optimization of Traditional RNNs on modern hardware

Трансформеры нынче SOTA во многих приложениях, однако в некоторых задачах (типа определении четности), показывают себе плохо, а RNN - хорошо. Однако RNN плохо параллелизуются и вообще неэффективно используют ресурсы GPU. Ребята написали кастомные fused CUDA/Triton кернелы, эффективно использующие иерархию памяти, для forward и backward и смогли добиться ускорения до 50 раз по сравнению с ванильной торчовой реализацией.

OSTQuant: Refining Large Language Model Quantization with Orthogonal and Scaling Transformations for Better Distribution Fitting

В данной статье предлагают оценивать эффективность квантизации по тому, насколько плотно покрывает сетка квантизации целевое распределение. При наивном round-to-nearest подходе из-за выбросов, большая часть объема не используется. Добавление обучаемых вращений из SpinQuant и scaling факторов а-ля SmoothQuant позволяет более равномерно распределять распределение весов по решетке и тем самым улучшает качество квантования. К сожалению, на постере не было ни одного из авторов, а какой-то левый чувак, который не особо был в теме, потому содержательного разговора не получилось.

Approaching Rate-Distortion Limits in Neural Compression with Lattice Transform Coding

В данной работе авторы ставят своей задачу добиться сжатия сигналов любой природы как можно ближе к теоретико-информационному пределу. Для этого обучают автокодировщик (маленькую MLP), чтобы преобразовывать входные данные (с возможными выбросами и широким диапазоном значение), в некоторое более регулярное множество, и затем проектируют на оптимальную сетку (E8 для 8-мерной векторной квантизации, Λ24 для 24-мерной квантизации). Валидируют преимущественно на синтетике. Когда я спросил авторов про trellis-based квантизацию из QTIP, который потенциально может быть еще ближе к rate-distortion limit, авторы ответили, что не знают, что это такое.

Streamlining Redundant Layers to Compress Large Language Models

Идея простая - находим последовательность наименее важных блоков в трансформере по косинусной близости (по аналогии с The Unreasonable Ineffectiveness of the Deeper Layers), пруним, вставляем один трансформерный блок / FFN и дообучаем немного. Работает несколько лучше, чем просто прунинг блоков (кто бы сомневался).

DuoAttention: Efficient Long-Context LLM Inference with Retrieval and Streaming Heads

Головы Attention делятся на 2 типа - Retrieval heads, которые могут аттендиться на любой токен в последовательности, и Streaming heads, которые смотрят только на последние токены и attention sinks в начале последовательности. Для вторых можно сэкономить на вычислениях и памяти, храня только кэш для самого начала и некоторого фиксированного количества последних токенов. Для определения streaming голов маску в каждом attention параметризуют как взвешенную сумму полного causal attention и streaming attention. И те головы, где коэффициент streaming attention наибольший далее обрабатываются как streaming heads. Предложенная техника позволяет уменьшить кэш почти вдвое без просадки на LongBench задачах.



group-telegram.com/quant_prune_distill/483
Create:
Last Update:

Сильно запоздалый пост из-за праздников и NeurIPS дедлайна, но все же дошли 🚶‍♀️ в итоге руки .

Ниже подборка статей с 1️⃣ постерной сессии на ICLR, которые так или иначе были связаны с EfficientDL:

MambaQuant: Quantizing the Mamba Family with Variance Aligned Rotation Methods

В данной статье акцентируют внимание на квантизации Mamba 🐍- архитектур в разных задачах. Наивная адаптация методов квантизации для трансформерных LLM просаживает сильно качество на S6 моделях. Авторы анализируют проблемные места в квантизации мамб, где накапливается большая ошибка и предлагают свое решение:

🎯 Whitening преобразование вместо Адамара в offline rotations.
🎯 Добавление scaling факторов в модель в стиле SmoothQuant, учитывающих специфику Mamba, для упрощения задачи квантизации.

Метод валидируется на ряде NLP/Vision задач, где показывает заметное улучшение по сравнению с бейзлайнами при квантизации весов и активаций.

FlashRNN: I/O-Aware Optimization of Traditional RNNs on modern hardware

Трансформеры нынче SOTA во многих приложениях, однако в некоторых задачах (типа определении четности), показывают себе плохо, а RNN - хорошо. Однако RNN плохо параллелизуются и вообще неэффективно используют ресурсы GPU. Ребята написали кастомные fused CUDA/Triton кернелы, эффективно использующие иерархию памяти, для forward и backward и смогли добиться ускорения до 50 раз по сравнению с ванильной торчовой реализацией.

OSTQuant: Refining Large Language Model Quantization with Orthogonal and Scaling Transformations for Better Distribution Fitting

В данной статье предлагают оценивать эффективность квантизации по тому, насколько плотно покрывает сетка квантизации целевое распределение. При наивном round-to-nearest подходе из-за выбросов, большая часть объема не используется. Добавление обучаемых вращений из SpinQuant и scaling факторов а-ля SmoothQuant позволяет более равномерно распределять распределение весов по решетке и тем самым улучшает качество квантования. К сожалению, на постере не было ни одного из авторов, а какой-то левый чувак, который не особо был в теме, потому содержательного разговора не получилось.

Approaching Rate-Distortion Limits in Neural Compression with Lattice Transform Coding

В данной работе авторы ставят своей задачу добиться сжатия сигналов любой природы как можно ближе к теоретико-информационному пределу. Для этого обучают автокодировщик (маленькую MLP), чтобы преобразовывать входные данные (с возможными выбросами и широким диапазоном значение), в некоторое более регулярное множество, и затем проектируют на оптимальную сетку (E8 для 8-мерной векторной квантизации, Λ24 для 24-мерной квантизации). Валидируют преимущественно на синтетике. Когда я спросил авторов про trellis-based квантизацию из QTIP, который потенциально может быть еще ближе к rate-distortion limit, авторы ответили, что не знают, что это такое.

Streamlining Redundant Layers to Compress Large Language Models

Идея простая - находим последовательность наименее важных блоков в трансформере по косинусной близости (по аналогии с The Unreasonable Ineffectiveness of the Deeper Layers), пруним, вставляем один трансформерный блок / FFN и дообучаем немного. Работает несколько лучше, чем просто прунинг блоков (кто бы сомневался).

DuoAttention: Efficient Long-Context LLM Inference with Retrieval and Streaming Heads

Головы Attention делятся на 2 типа - Retrieval heads, которые могут аттендиться на любой токен в последовательности, и Streaming heads, которые смотрят только на последние токены и attention sinks в начале последовательности. Для вторых можно сэкономить на вычислениях и памяти, храня только кэш для самого начала и некоторого фиксированного количества последних токенов. Для определения streaming голов маску в каждом attention параметризуют как взвешенную сумму полного causal attention и streaming attention. И те головы, где коэффициент streaming attention наибольший далее обрабатываются как streaming heads. Предложенная техника позволяет уменьшить кэш почти вдвое без просадки на LongBench задачах.

BY КПД


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/quant_prune_distill/483

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Artem Kliuchnikov and his family fled Ukraine just days before the Russian invasion. And while money initially moved into stocks in the morning, capital moved out of safe-haven assets. The price of the 10-year Treasury note fell Friday, sending its yield up to 2% from a March closing low of 1.73%. "The argument from Telegram is, 'You should trust us because we tell you that we're trustworthy,'" Maréchal said. "It's really in the eye of the beholder whether that's something you want to buy into." Just days after Russia invaded Ukraine, Durov wrote that Telegram was "increasingly becoming a source of unverified information," and he worried about the app being used to "incite ethnic hatred."
from sg


Telegram КПД
FROM American