Telegram Group & Telegram Channel
В курсе "Основы байесовского вывода" сегодня говорили о двух важных общих сюжетах, пронизывающих всё машинное обучение.

СПбГУ — 2025.10.16 — Ближайшие соседи, проклятие размерности, разложение bias-variance-noise
(слайды, доска и ноутбук, как всегда, на странице курса)

Здесь логика изложения у меня такая: я начинаю с метода ближайших соседей и показываю, что на плоскости, там, где я могу нарисовать точки и разделяющие поверхности, он работает блестяще, может провести какую угодно разделяющую поверхность и вообще выглядит идеально. Возникает резонный вопрос: а вообще зачем нам всё машинное обучение тогда? Может, ближайших соседей достаточно, только решить проблемы с вычислительной сложностью (а их в целом можно решить), да и всё? Ответ на этот вопрос — проклятие размерности; почему и ближайшие соседи, и многие другие методы начинают ломаться, когда размерность пространства признаков растёт.

А второй сюжет начинается с основ статистической теории принятия решений: какая идеальная, наилучшая возможная функция предсказания? Какая у неё будет ожидаемая ошибка (спойлер: ненулевая, разумеется, в данных ведь есть шум)? А ту часть ошибки, которую мы контролируем, можно дальше разделить на две части: дисперсию, которая показывает, насколько модель сильно отклоняется от своего собственного ожидания в зависимости от конкретного датасета, и смещение, которое показывает, насколько это её ожидание далеко от идеальной функции предсказания. В результате получается легко интерпретируемый результат, который показывает один из главных компромиссов (tradeoffs) при выборе гиперпараметров моделей (например, коэффициента регуляризации): между смещением и дисперсией.
👍184



group-telegram.com/sinecor/667
Create:
Last Update:

В курсе "Основы байесовского вывода" сегодня говорили о двух важных общих сюжетах, пронизывающих всё машинное обучение.

СПбГУ — 2025.10.16 — Ближайшие соседи, проклятие размерности, разложение bias-variance-noise
(слайды, доска и ноутбук, как всегда, на странице курса)

Здесь логика изложения у меня такая: я начинаю с метода ближайших соседей и показываю, что на плоскости, там, где я могу нарисовать точки и разделяющие поверхности, он работает блестяще, может провести какую угодно разделяющую поверхность и вообще выглядит идеально. Возникает резонный вопрос: а вообще зачем нам всё машинное обучение тогда? Может, ближайших соседей достаточно, только решить проблемы с вычислительной сложностью (а их в целом можно решить), да и всё? Ответ на этот вопрос — проклятие размерности; почему и ближайшие соседи, и многие другие методы начинают ломаться, когда размерность пространства признаков растёт.

А второй сюжет начинается с основ статистической теории принятия решений: какая идеальная, наилучшая возможная функция предсказания? Какая у неё будет ожидаемая ошибка (спойлер: ненулевая, разумеется, в данных ведь есть шум)? А ту часть ошибки, которую мы контролируем, можно дальше разделить на две части: дисперсию, которая показывает, насколько модель сильно отклоняется от своего собственного ожидания в зависимости от конкретного датасета, и смещение, которое показывает, насколько это её ожидание далеко от идеальной функции предсказания. В результате получается легко интерпретируемый результат, который показывает один из главных компромиссов (tradeoffs) при выборе гиперпараметров моделей (например, коэффициента регуляризации): между смещением и дисперсией.

BY Sinекура




Share with your friend now:
group-telegram.com/sinecor/667

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Groups are also not fully encrypted, end-to-end. This includes private groups. Private groups cannot be seen by other Telegram users, but Telegram itself can see the groups and all of the communications that you have in them. All of the same risks and warnings about channels can be applied to groups. The gold standard of encryption, known as end-to-end encryption, where only the sender and person who receives the message are able to see it, is available on Telegram only when the Secret Chat function is enabled. Voice and video calls are also completely encrypted. That hurt tech stocks. For the past few weeks, the 10-year yield has traded between 1.72% and 2%, as traders moved into the bond for safety when Russia headlines were ugly—and out of it when headlines improved. Now, the yield is touching its pandemic-era high. If the yield breaks above that level, that could signal that it’s on a sustainable path higher. Higher long-dated bond yields make future profits less valuable—and many tech companies are valued on the basis of profits forecast for many years in the future. Ukrainian forces successfully attacked Russian vehicles in the capital city of Kyiv thanks to a public tip made through the encrypted messaging app Telegram, Ukraine's top law-enforcement agency said on Tuesday. Some people used the platform to organize ahead of the storming of the U.S. Capitol in January 2021, and last month Senator Mark Warner sent a letter to Durov urging him to curb Russian information operations on Telegram.
from us


Telegram Sinекура
FROM American