Telegram Group & Telegram Channel
Как я перепутала средние чеки и ARPPU и заруинила несколько A/B тестов

Я работаю в команде платежей, поэтому основные A/B тесты у нас проводятся на последнем этапе воронки - от нажатия кнопки “Купить” до успешной оплаты. Мы используем конверсию в успешную оплату как ключевую метрику и ARPPU как вспомогательную, это достаточно стандартный подход.

Иногда бывает, что одна из метрик падает, а другая растет. Чтобы понять, что на самом деле происходит с выручкой, мы используем прогнозную финмодель. Мой коллега Рома читал про это очень крутой доклад на Aha-25 (ссылка вот, попозже я может напишу развернутый отзыв на конфу).

Небольшая сноска про термины 🤓:
Средний чек (Average Order Value, AOV) - это просто вся выручка, деленная на количество транзакций, то есть буквально среднеарифметическое.
ARPPU (Average Revenue Per Paying User) - средняя выручка на платящего пользователя.
Пример: пользователь 1 купил на 200р, пользователь 2 купил на 100р, потом еще на 300р. Тогда средний чек будет (200+100+300)/3=200, а ARPPU = (200 + (100+300))/2 = 300, так как платящих пользователей 2 в этом примере.
Есть еще метрика ARPU - Average Revenue Per User, средняя выручка на пользователя (включая тех, кто не заплатил).

ARPPU будет всегда больше чем средний чек, как минимум не меньше.
В контексте A/B тестов эти метрики считаются базовыми и разбираются на любом курсе.

Моя ошибка была в том, что я считала средние чеки (просто mean(revenue)), но почему-то думала что это уже ARPPU, таким образом проанализировала несколько результатов тестов. Ошибку случайно заметил продакт, когда сверял исторические данные и увидел, что мои значения "ARPPU" по порядку величины подозрительно похожи на средние чеки 🤦‍♀️. Пришлось пересчитывать, благо принципиально выводы не поменялись, но несколько тестов были признаны неуспешными, а после пересчета оказалось, что все нормально.

Почему используется именно ARPPU как метрика в A/B тестировании?

В принципе, можно использовать разные денежные метрики в зависимости от поставленной задачи. В нашем случае мы рассматриваем ARPPU в связке с конверсией. Используя финмодель, эта связка помогает принимать решения не “на глазок”, а с прогнозом реальной выручки. Но только если метрики посчитаны правильно — теперь я это точно не забуду 🙃

#analytics #AB_tests



group-telegram.com/stats_for_science/144
Create:
Last Update:

Как я перепутала средние чеки и ARPPU и заруинила несколько A/B тестов

Я работаю в команде платежей, поэтому основные A/B тесты у нас проводятся на последнем этапе воронки - от нажатия кнопки “Купить” до успешной оплаты. Мы используем конверсию в успешную оплату как ключевую метрику и ARPPU как вспомогательную, это достаточно стандартный подход.

Иногда бывает, что одна из метрик падает, а другая растет. Чтобы понять, что на самом деле происходит с выручкой, мы используем прогнозную финмодель. Мой коллега Рома читал про это очень крутой доклад на Aha-25 (ссылка вот, попозже я может напишу развернутый отзыв на конфу).

Небольшая сноска про термины 🤓:
Средний чек (Average Order Value, AOV) - это просто вся выручка, деленная на количество транзакций, то есть буквально среднеарифметическое.
ARPPU (Average Revenue Per Paying User) - средняя выручка на платящего пользователя.
Пример: пользователь 1 купил на 200р, пользователь 2 купил на 100р, потом еще на 300р. Тогда средний чек будет (200+100+300)/3=200, а ARPPU = (200 + (100+300))/2 = 300, так как платящих пользователей 2 в этом примере.
Есть еще метрика ARPU - Average Revenue Per User, средняя выручка на пользователя (включая тех, кто не заплатил).

ARPPU будет всегда больше чем средний чек, как минимум не меньше.
В контексте A/B тестов эти метрики считаются базовыми и разбираются на любом курсе.

Моя ошибка была в том, что я считала средние чеки (просто mean(revenue)), но почему-то думала что это уже ARPPU, таким образом проанализировала несколько результатов тестов. Ошибку случайно заметил продакт, когда сверял исторические данные и увидел, что мои значения "ARPPU" по порядку величины подозрительно похожи на средние чеки 🤦‍♀️. Пришлось пересчитывать, благо принципиально выводы не поменялись, но несколько тестов были признаны неуспешными, а после пересчета оказалось, что все нормально.

Почему используется именно ARPPU как метрика в A/B тестировании?

В принципе, можно использовать разные денежные метрики в зависимости от поставленной задачи. В нашем случае мы рассматриваем ARPPU в связке с конверсией. Используя финмодель, эта связка помогает принимать решения не “на глазок”, а с прогнозом реальной выручки. Но только если метрики посчитаны правильно — теперь я это точно не забуду 🙃

#analytics #AB_tests

BY Статистика и R в науке и аналитике




Share with your friend now:
group-telegram.com/stats_for_science/144

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The Security Service of Ukraine said in a tweet that it was able to effectively target Russian convoys near Kyiv because of messages sent to an official Telegram bot account called "STOP Russian War." As such, the SC would like to remind investors to always exercise caution when evaluating investment opportunities, especially those promising unrealistically high returns with little or no risk. Investors should also never deposit money into someone’s personal bank account if instructed. In view of this, the regulator has cautioned investors not to rely on such investment tips / advice received through social media platforms. It has also said investors should exercise utmost caution while taking investment decisions while dealing in the securities market. Stocks closed in the red Friday as investors weighed upbeat remarks from Russian President Vladimir Putin about diplomatic discussions with Ukraine against a weaker-than-expected print on U.S. consumer sentiment. Telegram Messenger Blocks Navalny Bot During Russian Election
from us


Telegram Статистика и R в науке и аналитике
FROM American