Telegram Group & Telegram Channel
Немного о Бокс Кокс (Box Cox) трансформации.

Часто распределение экспериментальных данных, с которыми мы сталкиваемся в работе, отличаются от нормальных. При этом большое количество статистических методов в своей математической основе имеют допущение о нормальности распределения значений. Разумеется, существуют непараметрические критерии, которые не обладают таким ограничением, но их мощность (то есть вероятность найти значимые различия, там где они реально есть) в среднем ниже. Поэтому имеет смысл приводить свои данные к нормальному виду.
Бокс Кокс преобразование относится к семейству монотонных преобразований с помощью степенных функций. Идея метода состоит в подборе оптимальной степени (обозначаемой лямбда λ), при возведении в которую данные будут лучше соответствовать нормальному распределению. Обычно лямбда подбирается в диапазоне [-5;5].
Наиболее встречаемые значения параметра: 0, что соответствует логарифму от исходных данных (log(Y)), 0.5, что соответствует квадратному корню (Y0.5 = √(Y)), 1 как линейное преобразование, 2 как квадрат исходных данных (далее куб и четвертая и тд степень). Отрицательные значения: Y^-0.5 = 1/(√(Y)), Y^-1 = 1/Y, Y^-2 = 1/Y^2.
После трансформации необходимо проверить видоизмененные данные на соответствие нормальному распределению графически и с помощью статистических критериев, например теста Шапиро-Уилка.
Стоит обратить внимание, что применение любых видов трансформации может затруднить дальнейшую интерпретацию результатов. Например, в случае работы с линейными моделями, коэффициенты регрессии имеют определенный физический смысл относительно параметров. Можно привести пример: при изменении количества школ в штате на единицу, происходит такое-то изменение уровня образования/числа убийств, или что-то в подобном духе. Интерпретация исходных данных интуитивно понятна. Сложнее будет объяснять, скажем, как количество школ возведенное в степень -1.6 скажется на зависимой переменной и что это может значить. Поэтому с трансформацией необходимо обращаться осторожно и всегда держать в голове возможный физический смысл степенных коэффициентов.
Подробнее с формулами можно ознакомиться здесь: https://www.statisticshowto.com/box-cox-transformation/



group-telegram.com/stats_for_science/3
Create:
Last Update:

Немного о Бокс Кокс (Box Cox) трансформации.

Часто распределение экспериментальных данных, с которыми мы сталкиваемся в работе, отличаются от нормальных. При этом большое количество статистических методов в своей математической основе имеют допущение о нормальности распределения значений. Разумеется, существуют непараметрические критерии, которые не обладают таким ограничением, но их мощность (то есть вероятность найти значимые различия, там где они реально есть) в среднем ниже. Поэтому имеет смысл приводить свои данные к нормальному виду.
Бокс Кокс преобразование относится к семейству монотонных преобразований с помощью степенных функций. Идея метода состоит в подборе оптимальной степени (обозначаемой лямбда λ), при возведении в которую данные будут лучше соответствовать нормальному распределению. Обычно лямбда подбирается в диапазоне [-5;5].
Наиболее встречаемые значения параметра: 0, что соответствует логарифму от исходных данных (log(Y)), 0.5, что соответствует квадратному корню (Y0.5 = √(Y)), 1 как линейное преобразование, 2 как квадрат исходных данных (далее куб и четвертая и тд степень). Отрицательные значения: Y^-0.5 = 1/(√(Y)), Y^-1 = 1/Y, Y^-2 = 1/Y^2.
После трансформации необходимо проверить видоизмененные данные на соответствие нормальному распределению графически и с помощью статистических критериев, например теста Шапиро-Уилка.
Стоит обратить внимание, что применение любых видов трансформации может затруднить дальнейшую интерпретацию результатов. Например, в случае работы с линейными моделями, коэффициенты регрессии имеют определенный физический смысл относительно параметров. Можно привести пример: при изменении количества школ в штате на единицу, происходит такое-то изменение уровня образования/числа убийств, или что-то в подобном духе. Интерпретация исходных данных интуитивно понятна. Сложнее будет объяснять, скажем, как количество школ возведенное в степень -1.6 скажется на зависимой переменной и что это может значить. Поэтому с трансформацией необходимо обращаться осторожно и всегда держать в голове возможный физический смысл степенных коэффициентов.
Подробнее с формулами можно ознакомиться здесь: https://www.statisticshowto.com/box-cox-transformation/

BY Статистика и R в науке и аналитике




Share with your friend now:
group-telegram.com/stats_for_science/3

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Ukrainian President Volodymyr Zelensky said in a video message on Tuesday that Ukrainian forces "destroy the invaders wherever we can." Such instructions could actually endanger people — citizens receive air strike warnings via smartphone alerts. For tech stocks, “the main thing is yields,” Essaye said. "The inflation fire was already hot and now with war-driven inflation added to the mix, it will grow even hotter, setting off a scramble by the world’s central banks to pull back their stimulus earlier than expected," Chris Rupkey, chief economist at FWDBONDS, wrote in an email. "A spike in inflation rates has preceded economic recessions historically and this time prices have soared to levels that once again pose a threat to growth." Update March 8, 2022: EFF has clarified that Channels and Groups are not fully encrypted, end-to-end, updated our post to link to Telegram’s FAQ for Cloud and Secret chats, updated to clarify that auto-delete is available for group and channel admins, and added some additional links.
from us


Telegram Статистика и R в науке и аналитике
FROM American