Telegram Group & Telegram Channel
Параллельная генерация с Hogwild! Inference

Сегодня — статья инженеров Yandex Research, HSE и IST Austria. Речь в публикации идёт о Hogwild! Inference — движке параллельного инференса для LLM.

Авторы задались целью ускорить выполнение задачи одной моделью за счёт параллельной генерации. При этом инференс должен был оставаться интуитивно простым, а фреймворк — достаточно гибким, чтобы сделать эффективной коммуникацию между параллельными ветками генерации. Наконец, авторы стремились к тому, чтобы характер взаимодействия инстансов зависел в первую очередь от самой модели, а не от фреймворка параллельной генерации, то есть оставить принцип параллельной работы на откуп самим моделям.

Метод Hogwild! Inference предполагает использование нескольких экземпляров LLM — они называются «рабочими» (workers), — которые выполняют одну задачу параллельно, синхронизируясь через общий KV-кэш. Это позволяет им видеть и учитывать генерации друг друга в реальном времени. Идея в том, чтобы дать моделям возможность самим организовывать координацию без заранее заданных правил взаимодействия.

В этот общий KV-кэш каждый рабочий добавляет свои токены, которые затем дополняют общий контекст. Кэш организован как чат: завершённые абзацы reasoning каждого рабочего перемещаются в «историю», а текущие абзацы остаются в отдельном сегменте. При этом каждый рабочий видит текущую работу других — всё благодаря разделённым KV-блокам.

Чтобы избежать повторной обработки представлений на каждом шаге, авторы предлагают использовать свойства RoPE: для генерации нового токена каждым из рабочих блоки KV-кэша упорядочиваются по-разному для каждого рабочего (см. изображение). При этом сдвиг осуществляется не над всем блоком, а над query-токенами, что резко снижает вычислительные издержки. Таким образом, каждый рабочий может видеть новые токены других рабочих сразу после их генерации.

Система использует zero-shot prompting: рабочим предлагается обсуждать решение задачи, разделять работу между собой, не дублировать друг друга. Также авторы используют специальные интервенции в процесс генерации, чтобы сократить случаи, когда несколько рабочих совершают одну и ту же работу. Каждую N токенов одному из агентов подсовывается промпт вида «Делаю ли я лишнюю работу?» и предлагается ответить «да» или «нет». Эксперименты показывают, что такая вставка часто позволяет рабочему понять, что его работа уже сделана другим и можно двигаться дальше, либо изменить свою стратегию решения задачи.

Авторы оценивают Hogwild! Inference на задачах, требующих длительных рассуждений и предполагающих тривиального разбиения на независимые подзадачи: LIMO, LiveCodeBench, OlympiadBench, AIME. Эксперименты на разных моделях (Qwen3, QwQ, Deepseek R1, Phi4-R) показывают, что метод позволяет решать задачи за меньшее число последовательных шагов, чем обычная генерация. Например, QwQ-32B в LIMO (817 задач на математику) c использованием Hogwild! даёт прирост точности до 0,6 при 4000 токенах, в то время как бейзлайн — на уровне 0,4. Эксперименты также подтверждают масштабируемость: при двух рабочих генерация ускоряется в 1,8 раза, при четырёх — в 3,4.

Разбор подготовил Глеб Родионов

Душный NLP
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/stuffyNLP/132
Create:
Last Update:

Параллельная генерация с Hogwild! Inference

Сегодня — статья инженеров Yandex Research, HSE и IST Austria. Речь в публикации идёт о Hogwild! Inference — движке параллельного инференса для LLM.

Авторы задались целью ускорить выполнение задачи одной моделью за счёт параллельной генерации. При этом инференс должен был оставаться интуитивно простым, а фреймворк — достаточно гибким, чтобы сделать эффективной коммуникацию между параллельными ветками генерации. Наконец, авторы стремились к тому, чтобы характер взаимодействия инстансов зависел в первую очередь от самой модели, а не от фреймворка параллельной генерации, то есть оставить принцип параллельной работы на откуп самим моделям.

Метод Hogwild! Inference предполагает использование нескольких экземпляров LLM — они называются «рабочими» (workers), — которые выполняют одну задачу параллельно, синхронизируясь через общий KV-кэш. Это позволяет им видеть и учитывать генерации друг друга в реальном времени. Идея в том, чтобы дать моделям возможность самим организовывать координацию без заранее заданных правил взаимодействия.

В этот общий KV-кэш каждый рабочий добавляет свои токены, которые затем дополняют общий контекст. Кэш организован как чат: завершённые абзацы reasoning каждого рабочего перемещаются в «историю», а текущие абзацы остаются в отдельном сегменте. При этом каждый рабочий видит текущую работу других — всё благодаря разделённым KV-блокам.

Чтобы избежать повторной обработки представлений на каждом шаге, авторы предлагают использовать свойства RoPE: для генерации нового токена каждым из рабочих блоки KV-кэша упорядочиваются по-разному для каждого рабочего (см. изображение). При этом сдвиг осуществляется не над всем блоком, а над query-токенами, что резко снижает вычислительные издержки. Таким образом, каждый рабочий может видеть новые токены других рабочих сразу после их генерации.

Система использует zero-shot prompting: рабочим предлагается обсуждать решение задачи, разделять работу между собой, не дублировать друг друга. Также авторы используют специальные интервенции в процесс генерации, чтобы сократить случаи, когда несколько рабочих совершают одну и ту же работу. Каждую N токенов одному из агентов подсовывается промпт вида «Делаю ли я лишнюю работу?» и предлагается ответить «да» или «нет». Эксперименты показывают, что такая вставка часто позволяет рабочему понять, что его работа уже сделана другим и можно двигаться дальше, либо изменить свою стратегию решения задачи.

Авторы оценивают Hogwild! Inference на задачах, требующих длительных рассуждений и предполагающих тривиального разбиения на независимые подзадачи: LIMO, LiveCodeBench, OlympiadBench, AIME. Эксперименты на разных моделях (Qwen3, QwQ, Deepseek R1, Phi4-R) показывают, что метод позволяет решать задачи за меньшее число последовательных шагов, чем обычная генерация. Например, QwQ-32B в LIMO (817 задач на математику) c использованием Hogwild! даёт прирост точности до 0,6 при 4000 токенах, в то время как бейзлайн — на уровне 0,4. Эксперименты также подтверждают масштабируемость: при двух рабочих генерация ускоряется в 1,8 раза, при четырёх — в 3,4.

Разбор подготовил Глеб Родионов

Душный NLP

BY Душный NLP




Share with your friend now:
group-telegram.com/stuffyNLP/132

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

On Telegram’s website, it says that Pavel Durov “supports Telegram financially and ideologically while Nikolai (Duvov)’s input is technological.” Currently, the Telegram team is based in Dubai, having moved around from Berlin, London and Singapore after departing Russia. Meanwhile, the company which owns Telegram is registered in the British Virgin Islands. Either way, Durov says that he withdrew his resignation but that he was ousted from his company anyway. Subsequently, control of the company was reportedly handed to oligarchs Alisher Usmanov and Igor Sechin, both allegedly close associates of Russian leader Vladimir Putin. But Kliuchnikov, the Ukranian now in France, said he will use Signal or WhatsApp for sensitive conversations, but questions around privacy on Telegram do not give him pause when it comes to sharing information about the war. Overall, extreme levels of fear in the market seems to have morphed into something more resembling concern. For example, the Cboe Volatility Index fell from its 2022 peak of 36, which it hit Monday, to around 30 on Friday, a sign of easing tensions. Meanwhile, while the price of WTI crude oil slipped from Sunday’s multiyear high $130 of barrel to $109 a pop. Markets have been expecting heavy restrictions on Russian oil, some of which the U.S. has already imposed, and that would reduce the global supply and bring about even more burdensome inflation. In the past, it was noticed that through bulk SMSes, investors were induced to invest in or purchase the stocks of certain listed companies.
from us


Telegram Душный NLP
FROM American