Wan image2video и сравнение с skyreels_i2v
Alibaba выпустила сразу 5 моделей с разными размерами (1.3b, 14b), режимами (t2v, i2v) и разрешением (480p, 720p).
Wan поддерживает разрешение до 1280x720p 16fps (hunyuan skyreels i2v - до 544p 24fps)
В воркфлоу есть интерполяция до 16fps->30 fps (процесс занимает секунд 20-30). Без интерполяции видео - дерганое.
Wan NF4(размер 9GB), Wan Q4.gguf (10GB), fp8 (17GB) примерно равны по скорости. Но у квантованных есть деградация качества (хуже следование промпту, иногда генерируют дисторсию). Поэтому рекомендую именно fp8. Попробуйте nf4, если у вас мало vram (например, 12GB). При разрешении 720p намного меньше артефактов, чем при 480p, но время генерации возрастает значительно. Большинство приложенных примеров в 720p, если не указано иное.
Воркфлоу от kijai у меня был в два раза медленнее чем от comfy.
- Разрабы WanAI рекомендуют 40 шагов для i2v и 50 шагов для t2v. Но это очень долго и ест много VRAM, поэтому я использую 15 шагов.
- Также есть video2video воркфлоу от kijai на основе 1.3b-t2v. Движение частично подхватывает, лицо не клонирует. Надо будет попробовать real2anime и наоборот.
## Cравнение с Hunyuan-skyreels-i2v
- Качество видео при схожих настройках схожее, но в skyreels меньше движения и хуже следование промпту. В некоторых трудных случаях (аниме и мультики) skyreels просто генерирует дисторсию.
- wan_14b_i2v-544p чуть медленнее чем чем hunyuan_skyreels_13b_i2.
- Wan-t2v из коробки умеет в наготу, но, в большинстве случаев, стремится разместить девушку спиной, либо закрыть причинное место каким-нибудь предметом. hunyuan_t2v в этом плане был покладистей, и анатомия лучше. Но для wan уже появляются лоры на civitai (пока только для wan1.3b), так что анатомию поправят. у i2v модели особых проблем с анатомией не заметил, что на входе то и на выходе. nsfw примеры выложил тут: https://www.group-telegram.com/tensor_art
- По моим впечатлениям, hunyuan_t2v чуть лучше справляется с реалистичностью лица, кожи и NSFW. У wan_t2v почему-то детализации не хватает.
## Установка
- обновляем комфи через update_comfyui.bat
- устанавливаем кастомные ноды через менеджер -> git url:
интерполяция: https://github.com/Fannovel16/ComfyUI-Frame-Interpolation
nf4: https://github.com/silveroxides/ComfyUI_bnb_nf4_fp4_Loaders
GGUF: https://github.com/city96/ComfyUI-GGUF
Качаем модели отсюда https://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/tree/main:
- umt5_xxl_fp8 в /text_encoders (внимание: umt5_xxl от kijai (для fp8, fp16) не работает с воркфлоу от comfyanonymous (для gguf, nf4) и наоборот)
- wan_2.1_vae в /vae:
- clip_vision_h в /clip_vision
- модели fp8 в /diffusion_models
Опционально, GGUF:
в /unet: https://huggingface.co/city96/Wan2.1-I2V-14B-480P-gguf
Опционально, NF4:
nf4 в /diffusion_models: https://civitai.com/models/1299436?modelVersionId=1466629
Воркфлоу:
- wan_t2v_1.3b: https://github.com/Mozer/comfy_stuff/blob/main/workflows/wan_1.3b_t2v.json
- wan_i2v_14b_nf4_gguf: https://github.com/Mozer/comfy_stuff/blob/main/workflows/wan_14b_i2v.json
Там же есть другие ворклфлоу, например для skyreels_i2v.
- Опционально ставим triton и sage_attn для windows (ускорение на 15% и уменьшение потребления VRAM): https://www.reddit.com/r/StableDiffusion/comments/1h7hunp/how_to_run_hunyuanvideo_on_a_single_24gb_vram_card/
## Выводы
Если надо качество - юзаем 14b_i2v_720p (ждем 11+ минут). Если нужна скорость - 14b_i2v_480p (ждем 4 минуты) или 1.3b_i2v_480p (1 минута). И ждем лоры.
Фото: David Dubnitskiy
потестить 14b онлайн: https://huggingface.co/spaces/Wan-AI/Wan2.1
Alibaba выпустила сразу 5 моделей с разными размерами (1.3b, 14b), режимами (t2v, i2v) и разрешением (480p, 720p).
Wan поддерживает разрешение до 1280x720p 16fps (hunyuan skyreels i2v - до 544p 24fps)
В воркфлоу есть интерполяция до 16fps->30 fps (процесс занимает секунд 20-30). Без интерполяции видео - дерганое.
Wan NF4(размер 9GB), Wan Q4.gguf (10GB), fp8 (17GB) примерно равны по скорости. Но у квантованных есть деградация качества (хуже следование промпту, иногда генерируют дисторсию). Поэтому рекомендую именно fp8. Попробуйте nf4, если у вас мало vram (например, 12GB). При разрешении 720p намного меньше артефактов, чем при 480p, но время генерации возрастает значительно. Большинство приложенных примеров в 720p, если не указано иное.
Воркфлоу от kijai у меня был в два раза медленнее чем от comfy.
832x480 33fr 15st:
t2v_1.3b (5 GB vram) - 1 минута
832x480 33fr 15st:
i2v_14b_fp8 (18 GB vram) - 4.5 минут
i2v_14b_Q4 (20 GB vram) - 4.5 минут
i2v_14b_nf4 (19 GB vram) - 4 минуты
1280x720 33fr 15st:
14b_i2v_fp8 (20 GB) - 11.5 минут
14b_i2v_Q4 (15 GB) - 11 минут
14b_i2v_nf4 (15 GB) - 11 минут
1280x720 81fr 15st:
14b_i2v_fp8_kijai (39 GB) - 43 минуты
960x544 49 frames 15 steps:
wan_14b_i2v_kijai (29 GB vram) - 14 минут
skyreels_i2v_fp8 - 7.5 минут
- Разрабы WanAI рекомендуют 40 шагов для i2v и 50 шагов для t2v. Но это очень долго и ест много VRAM, поэтому я использую 15 шагов.
- Также есть video2video воркфлоу от kijai на основе 1.3b-t2v. Движение частично подхватывает, лицо не клонирует. Надо будет попробовать real2anime и наоборот.
## Cравнение с Hunyuan-skyreels-i2v
- Качество видео при схожих настройках схожее, но в skyreels меньше движения и хуже следование промпту. В некоторых трудных случаях (аниме и мультики) skyreels просто генерирует дисторсию.
- wan_14b_i2v-544p чуть медленнее чем чем hunyuan_skyreels_13b_i2.
- Wan-t2v из коробки умеет в наготу, но, в большинстве случаев, стремится разместить девушку спиной, либо закрыть причинное место каким-нибудь предметом. hunyuan_t2v в этом плане был покладистей, и анатомия лучше. Но для wan уже появляются лоры на civitai (пока только для wan1.3b), так что анатомию поправят. у i2v модели особых проблем с анатомией не заметил, что на входе то и на выходе. nsfw примеры выложил тут: https://www.group-telegram.com/tensor_art
- По моим впечатлениям, hunyuan_t2v чуть лучше справляется с реалистичностью лица, кожи и NSFW. У wan_t2v почему-то детализации не хватает.
## Установка
- обновляем комфи через update_comfyui.bat
- устанавливаем кастомные ноды через менеджер -> git url:
интерполяция: https://github.com/Fannovel16/ComfyUI-Frame-Interpolation
nf4: https://github.com/silveroxides/ComfyUI_bnb_nf4_fp4_Loaders
GGUF: https://github.com/city96/ComfyUI-GGUF
Качаем модели отсюда https://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/tree/main:
- umt5_xxl_fp8 в /text_encoders (внимание: umt5_xxl от kijai (для fp8, fp16) не работает с воркфлоу от comfyanonymous (для gguf, nf4) и наоборот)
- wan_2.1_vae в /vae:
- clip_vision_h в /clip_vision
- модели fp8 в /diffusion_models
Опционально, GGUF:
в /unet: https://huggingface.co/city96/Wan2.1-I2V-14B-480P-gguf
Опционально, NF4:
nf4 в /diffusion_models: https://civitai.com/models/1299436?modelVersionId=1466629
Воркфлоу:
- wan_t2v_1.3b: https://github.com/Mozer/comfy_stuff/blob/main/workflows/wan_1.3b_t2v.json
- wan_i2v_14b_nf4_gguf: https://github.com/Mozer/comfy_stuff/blob/main/workflows/wan_14b_i2v.json
Там же есть другие ворклфлоу, например для skyreels_i2v.
- Опционально ставим triton и sage_attn для windows (ускорение на 15% и уменьшение потребления VRAM): https://www.reddit.com/r/StableDiffusion/comments/1h7hunp/how_to_run_hunyuanvideo_on_a_single_24gb_vram_card/
## Выводы
Если надо качество - юзаем 14b_i2v_720p (ждем 11+ минут). Если нужна скорость - 14b_i2v_480p (ждем 4 минуты) или 1.3b_i2v_480p (1 минута). И ждем лоры.
Фото: David Dubnitskiy
потестить 14b онлайн: https://huggingface.co/spaces/Wan-AI/Wan2.1
group-telegram.com/tensorbanana/1187
Create:
Last Update:
Last Update:
Wan image2video и сравнение с skyreels_i2v
Alibaba выпустила сразу 5 моделей с разными размерами (1.3b, 14b), режимами (t2v, i2v) и разрешением (480p, 720p).
Wan поддерживает разрешение до 1280x720p 16fps (hunyuan skyreels i2v - до 544p 24fps)
В воркфлоу есть интерполяция до 16fps->30 fps (процесс занимает секунд 20-30). Без интерполяции видео - дерганое.
Wan NF4(размер 9GB), Wan Q4.gguf (10GB), fp8 (17GB) примерно равны по скорости. Но у квантованных есть деградация качества (хуже следование промпту, иногда генерируют дисторсию). Поэтому рекомендую именно fp8. Попробуйте nf4, если у вас мало vram (например, 12GB). При разрешении 720p намного меньше артефактов, чем при 480p, но время генерации возрастает значительно. Большинство приложенных примеров в 720p, если не указано иное.
Воркфлоу от kijai у меня был в два раза медленнее чем от comfy.
- Разрабы WanAI рекомендуют 40 шагов для i2v и 50 шагов для t2v. Но это очень долго и ест много VRAM, поэтому я использую 15 шагов.
- Также есть video2video воркфлоу от kijai на основе 1.3b-t2v. Движение частично подхватывает, лицо не клонирует. Надо будет попробовать real2anime и наоборот.
## Cравнение с Hunyuan-skyreels-i2v
- Качество видео при схожих настройках схожее, но в skyreels меньше движения и хуже следование промпту. В некоторых трудных случаях (аниме и мультики) skyreels просто генерирует дисторсию.
- wan_14b_i2v-544p чуть медленнее чем чем hunyuan_skyreels_13b_i2.
- Wan-t2v из коробки умеет в наготу, но, в большинстве случаев, стремится разместить девушку спиной, либо закрыть причинное место каким-нибудь предметом. hunyuan_t2v в этом плане был покладистей, и анатомия лучше. Но для wan уже появляются лоры на civitai (пока только для wan1.3b), так что анатомию поправят. у i2v модели особых проблем с анатомией не заметил, что на входе то и на выходе. nsfw примеры выложил тут: https://www.group-telegram.com/tensor_art
- По моим впечатлениям, hunyuan_t2v чуть лучше справляется с реалистичностью лица, кожи и NSFW. У wan_t2v почему-то детализации не хватает.
## Установка
- обновляем комфи через update_comfyui.bat
- устанавливаем кастомные ноды через менеджер -> git url:
интерполяция: https://github.com/Fannovel16/ComfyUI-Frame-Interpolation
nf4: https://github.com/silveroxides/ComfyUI_bnb_nf4_fp4_Loaders
GGUF: https://github.com/city96/ComfyUI-GGUF
Качаем модели отсюда https://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/tree/main:
- umt5_xxl_fp8 в /text_encoders (внимание: umt5_xxl от kijai (для fp8, fp16) не работает с воркфлоу от comfyanonymous (для gguf, nf4) и наоборот)
- wan_2.1_vae в /vae:
- clip_vision_h в /clip_vision
- модели fp8 в /diffusion_models
Опционально, GGUF:
в /unet: https://huggingface.co/city96/Wan2.1-I2V-14B-480P-gguf
Опционально, NF4:
nf4 в /diffusion_models: https://civitai.com/models/1299436?modelVersionId=1466629
Воркфлоу:
- wan_t2v_1.3b: https://github.com/Mozer/comfy_stuff/blob/main/workflows/wan_1.3b_t2v.json
- wan_i2v_14b_nf4_gguf: https://github.com/Mozer/comfy_stuff/blob/main/workflows/wan_14b_i2v.json
Там же есть другие ворклфлоу, например для skyreels_i2v.
- Опционально ставим triton и sage_attn для windows (ускорение на 15% и уменьшение потребления VRAM): https://www.reddit.com/r/StableDiffusion/comments/1h7hunp/how_to_run_hunyuanvideo_on_a_single_24gb_vram_card/
## Выводы
Если надо качество - юзаем 14b_i2v_720p (ждем 11+ минут). Если нужна скорость - 14b_i2v_480p (ждем 4 минуты) или 1.3b_i2v_480p (1 минута). И ждем лоры.
Фото: David Dubnitskiy
потестить 14b онлайн: https://huggingface.co/spaces/Wan-AI/Wan2.1
Alibaba выпустила сразу 5 моделей с разными размерами (1.3b, 14b), режимами (t2v, i2v) и разрешением (480p, 720p).
Wan поддерживает разрешение до 1280x720p 16fps (hunyuan skyreels i2v - до 544p 24fps)
В воркфлоу есть интерполяция до 16fps->30 fps (процесс занимает секунд 20-30). Без интерполяции видео - дерганое.
Wan NF4(размер 9GB), Wan Q4.gguf (10GB), fp8 (17GB) примерно равны по скорости. Но у квантованных есть деградация качества (хуже следование промпту, иногда генерируют дисторсию). Поэтому рекомендую именно fp8. Попробуйте nf4, если у вас мало vram (например, 12GB). При разрешении 720p намного меньше артефактов, чем при 480p, но время генерации возрастает значительно. Большинство приложенных примеров в 720p, если не указано иное.
Воркфлоу от kijai у меня был в два раза медленнее чем от comfy.
832x480 33fr 15st:
t2v_1.3b (5 GB vram) - 1 минута
832x480 33fr 15st:
i2v_14b_fp8 (18 GB vram) - 4.5 минут
i2v_14b_Q4 (20 GB vram) - 4.5 минут
i2v_14b_nf4 (19 GB vram) - 4 минуты
1280x720 33fr 15st:
14b_i2v_fp8 (20 GB) - 11.5 минут
14b_i2v_Q4 (15 GB) - 11 минут
14b_i2v_nf4 (15 GB) - 11 минут
1280x720 81fr 15st:
14b_i2v_fp8_kijai (39 GB) - 43 минуты
960x544 49 frames 15 steps:
wan_14b_i2v_kijai (29 GB vram) - 14 минут
skyreels_i2v_fp8 - 7.5 минут
- Разрабы WanAI рекомендуют 40 шагов для i2v и 50 шагов для t2v. Но это очень долго и ест много VRAM, поэтому я использую 15 шагов.
- Также есть video2video воркфлоу от kijai на основе 1.3b-t2v. Движение частично подхватывает, лицо не клонирует. Надо будет попробовать real2anime и наоборот.
## Cравнение с Hunyuan-skyreels-i2v
- Качество видео при схожих настройках схожее, но в skyreels меньше движения и хуже следование промпту. В некоторых трудных случаях (аниме и мультики) skyreels просто генерирует дисторсию.
- wan_14b_i2v-544p чуть медленнее чем чем hunyuan_skyreels_13b_i2.
- Wan-t2v из коробки умеет в наготу, но, в большинстве случаев, стремится разместить девушку спиной, либо закрыть причинное место каким-нибудь предметом. hunyuan_t2v в этом плане был покладистей, и анатомия лучше. Но для wan уже появляются лоры на civitai (пока только для wan1.3b), так что анатомию поправят. у i2v модели особых проблем с анатомией не заметил, что на входе то и на выходе. nsfw примеры выложил тут: https://www.group-telegram.com/tensor_art
- По моим впечатлениям, hunyuan_t2v чуть лучше справляется с реалистичностью лица, кожи и NSFW. У wan_t2v почему-то детализации не хватает.
## Установка
- обновляем комфи через update_comfyui.bat
- устанавливаем кастомные ноды через менеджер -> git url:
интерполяция: https://github.com/Fannovel16/ComfyUI-Frame-Interpolation
nf4: https://github.com/silveroxides/ComfyUI_bnb_nf4_fp4_Loaders
GGUF: https://github.com/city96/ComfyUI-GGUF
Качаем модели отсюда https://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/tree/main:
- umt5_xxl_fp8 в /text_encoders (внимание: umt5_xxl от kijai (для fp8, fp16) не работает с воркфлоу от comfyanonymous (для gguf, nf4) и наоборот)
- wan_2.1_vae в /vae:
- clip_vision_h в /clip_vision
- модели fp8 в /diffusion_models
Опционально, GGUF:
в /unet: https://huggingface.co/city96/Wan2.1-I2V-14B-480P-gguf
Опционально, NF4:
nf4 в /diffusion_models: https://civitai.com/models/1299436?modelVersionId=1466629
Воркфлоу:
- wan_t2v_1.3b: https://github.com/Mozer/comfy_stuff/blob/main/workflows/wan_1.3b_t2v.json
- wan_i2v_14b_nf4_gguf: https://github.com/Mozer/comfy_stuff/blob/main/workflows/wan_14b_i2v.json
Там же есть другие ворклфлоу, например для skyreels_i2v.
- Опционально ставим triton и sage_attn для windows (ускорение на 15% и уменьшение потребления VRAM): https://www.reddit.com/r/StableDiffusion/comments/1h7hunp/how_to_run_hunyuanvideo_on_a_single_24gb_vram_card/
## Выводы
Если надо качество - юзаем 14b_i2v_720p (ждем 11+ минут). Если нужна скорость - 14b_i2v_480p (ждем 4 минуты) или 1.3b_i2v_480p (1 минута). И ждем лоры.
Фото: David Dubnitskiy
потестить 14b онлайн: https://huggingface.co/spaces/Wan-AI/Wan2.1
BY Tensor Banana

Share with your friend now:
group-telegram.com/tensorbanana/1187