Telegram Group & Telegram Channel
Делюсь своими самыми большими ошибками и запускаю подкаст про фэйлы Learning machine

В прошлом посте я написала про то, как важно осмыслять свои ошибки и учится на них. И про то, что ваши ошибки определяют ваш масштаб и то, чем вы реально занимаетесь чуть ли не лучше всех других признаков. И пообещала, что если пост соберет 200 огонечков - запостить свои 3 самые большие ошибки. Пост набрал 500. Я если честно офигела от такого интереса.

Как истинный продуктовик я села анализировать причины. Это самый популярный пост у меня в канале из всех моих десятков постов. В чем причина?
И тут я поняла, что в моем инфопространстве почти нет рассказов об ошибках и фейлах на пути к результатам!!
Кажется, что у всех все сразу получается, деньги сыпятся с неба в легкости, все фичи стреляют, экономика сразу сходятся, клиенты ко всем стучаться сами со дня первого запуска. Но по моему опыту общения с фаундерами, предпринимателями, бизнесменами, топ менеджерами - это вообще не так. И открою вам страшную тайну - так не бывает.
Люди, которые пришли к классным результатам - это не люди у которых все получается с первого раза. Это люди, которые сталкиваясь с огромным количеством трудностей, ошибок встают, отряхиваются и продолжают, становясь все лучше и все крепче после каждого вызова. Это не идеальные эксперты, которые все знают сразу. Это learning machines.

Я помню как в прошлом году мне очень отрезонировала мысль одного опытного инвестора, с которым обсуждали проект. “Experts who claim to know how users should or shouldn't behave actually don't know shit. Nobody does. The world is changing, and there are an infinite number of details in every case. So, I don't care about the rules for doing things. All I care about when I look at founders is: who among you is a learning machine?”
Если коротко - никто ничего не знает заранее, самое главное - смотреть на ваши конкретные данные и ваш конкретный кейс и быстро делать выводы, ставить эксперименты и учится на ошибках. И навык быстрого обучения на экспериментах и ошибках и является самым ценным. Более того в машинном обучении этот скилл называется металернингом и по мнению некоторых экспертов лучше всего определяет то, насколько ИИ близок к AGI. Но об этом потом.

А сейчас я прихожу к вам с очень важной новостью!
Я запускаю подкаст Learning machine.
Это подкаст про фэйлы на пути к успеху и как мы на них учимся. Я считаю, что в публичном поле очень нужен такой контент. И учиться на чужих ошибках даже продуктивнее, чем на чужих успехах.
В первом выпуске, который можно посмотреть по ссылке, я рассказываю про свои ошибки.
В следующих выпусках буду выкладывать интервью с разными крутыми людьми и их опытом обучения на ошибках на пути к своей крутости. Через неделю выложу следующее видео с очень интересным гостем и сделаю короткую текстовую расшифровку тут в канале.
Обязательно подписывайтесь на мой канал и следите за подкастом.
Давайте вместе перейдем от парадигмы успешного успеха и денег в легкости к парадигме толерантности и обучения на ошибках.

В комментариях предлагайте, про чьи фэйлы и уроки из низ вы бы хотели послушать - кого еще звать гостем подкаста.



group-telegram.com/tldr_tany/182
Create:
Last Update:

Делюсь своими самыми большими ошибками и запускаю подкаст про фэйлы Learning machine

В прошлом посте я написала про то, как важно осмыслять свои ошибки и учится на них. И про то, что ваши ошибки определяют ваш масштаб и то, чем вы реально занимаетесь чуть ли не лучше всех других признаков. И пообещала, что если пост соберет 200 огонечков - запостить свои 3 самые большие ошибки. Пост набрал 500. Я если честно офигела от такого интереса.

Как истинный продуктовик я села анализировать причины. Это самый популярный пост у меня в канале из всех моих десятков постов. В чем причина?
И тут я поняла, что в моем инфопространстве почти нет рассказов об ошибках и фейлах на пути к результатам!!
Кажется, что у всех все сразу получается, деньги сыпятся с неба в легкости, все фичи стреляют, экономика сразу сходятся, клиенты ко всем стучаться сами со дня первого запуска. Но по моему опыту общения с фаундерами, предпринимателями, бизнесменами, топ менеджерами - это вообще не так. И открою вам страшную тайну - так не бывает.
Люди, которые пришли к классным результатам - это не люди у которых все получается с первого раза. Это люди, которые сталкиваясь с огромным количеством трудностей, ошибок встают, отряхиваются и продолжают, становясь все лучше и все крепче после каждого вызова. Это не идеальные эксперты, которые все знают сразу. Это learning machines.

Я помню как в прошлом году мне очень отрезонировала мысль одного опытного инвестора, с которым обсуждали проект. “Experts who claim to know how users should or shouldn't behave actually don't know shit. Nobody does. The world is changing, and there are an infinite number of details in every case. So, I don't care about the rules for doing things. All I care about when I look at founders is: who among you is a learning machine?”
Если коротко - никто ничего не знает заранее, самое главное - смотреть на ваши конкретные данные и ваш конкретный кейс и быстро делать выводы, ставить эксперименты и учится на ошибках. И навык быстрого обучения на экспериментах и ошибках и является самым ценным. Более того в машинном обучении этот скилл называется металернингом и по мнению некоторых экспертов лучше всего определяет то, насколько ИИ близок к AGI. Но об этом потом.

А сейчас я прихожу к вам с очень важной новостью!
Я запускаю подкаст Learning machine.
Это подкаст про фэйлы на пути к успеху и как мы на них учимся. Я считаю, что в публичном поле очень нужен такой контент. И учиться на чужих ошибках даже продуктивнее, чем на чужих успехах.
В первом выпуске, который можно посмотреть по ссылке, я рассказываю про свои ошибки.
В следующих выпусках буду выкладывать интервью с разными крутыми людьми и их опытом обучения на ошибках на пути к своей крутости. Через неделю выложу следующее видео с очень интересным гостем и сделаю короткую текстовую расшифровку тут в канале.
Обязательно подписывайтесь на мой канал и следите за подкастом.
Давайте вместе перейдем от парадигмы успешного успеха и денег в легкости к парадигме толерантности и обучения на ошибках.

В комментариях предлагайте, про чьи фэйлы и уроки из низ вы бы хотели послушать - кого еще звать гостем подкаста.

BY tldr_tany (Таня Савельева)




Share with your friend now:
group-telegram.com/tldr_tany/182

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

As such, the SC would like to remind investors to always exercise caution when evaluating investment opportunities, especially those promising unrealistically high returns with little or no risk. Investors should also never deposit money into someone’s personal bank account if instructed. Two days after Russia invaded Ukraine, an account on the Telegram messaging platform posing as President Volodymyr Zelenskiy urged his armed forces to surrender. Given the pro-privacy stance of the platform, it’s taken as a given that it’ll be used for a number of reasons, not all of them good. And Telegram has been attached to a fair few scandals related to terrorism, sexual exploitation and crime. Back in 2015, Vox described Telegram as “ISIS’ app of choice,” saying that the platform’s real use is the ability to use channels to distribute material to large groups at once. Telegram has acted to remove public channels affiliated with terrorism, but Pavel Durov reiterated that he had no business snooping on private conversations. At this point, however, Durov had already been working on Telegram with his brother, and further planned a mobile-first social network with an explicit focus on anti-censorship. Later in April, he told TechCrunch that he had left Russia and had “no plans to go back,” saying that the nation was currently “incompatible with internet business at the moment.” He added later that he was looking for a country that matched his libertarian ideals to base his next startup. Telegram, which does little policing of its content, has also became a hub for Russian propaganda and misinformation. Many pro-Kremlin channels have become popular, alongside accounts of journalists and other independent observers.
from us


Telegram tldr_tany (Таня Савельева)
FROM American