Telegram Group Search
Новая работа про ускорение видео-диффузии — представляют SLA (Selective Linear Attention), обучаемый гибридный механизм внимания.

🎯 В чём идея:
- Обычное Attention растёт квадратично по длине — для длинных видео это огромные затраты.
- SLA делит внимание на три типа: критическое, несущественное и промежуточное.
- Критическое обрабатывается через FlashAttention, несущественное — пропускается, промежуточное — через линейное внимание.
- Быстрый шаг mean pooling заранее помечает блоки, экономя вычисления.

📈 Результаты:
- Снижение вычислений в attention на 95%.
- Генерация стала в 2.2 раза быстрее на 1.3B видеомодели.
- Достаточно короткого fine-tuning — полное переобучение не нужно.
- Качество при этом не падает — линейное внимание в роли вспомогательного сохраняет точность, а высокие веса ведут себя как многомерные паттерны, низкие — хорошо сжимаются.

📄 Paper: https://arxiv.org/abs/2509.24006

#AI #diffusion #video #deeplearning
3
Media is too big
VIEW IN TELEGRAM
GigaChat Vision Team — ваша будущая команда! 😉

Если вы зарегистрируетесь на One Day Offer для NLP- и CV-инженеров и пройдёте все этапы отбора, то уже совсем скоро будете:

✔️ Обучать Vision, 3D/CAD и омни-модальные модели на тысячах A100/H100.
✔️ Создавать live-ассистента на edge-устройствах, а также базовые модели VLA для промышленных проектов: автоматизированных фабрик, автопилотов и роботов.
✔️ Работать с документами: Document Intelligence и разработка VLM OCR.
✔️ Развивать мультимодальную инфраструктуру: от инференса генеративных моделей до создания и авторазметки синтетических данных

Дублируем ссылку на регистрацию — до встречи 4 октября!
3
Wink AI Challenge — хакатон на стыке IT и кино. Участников ждут задачи, которые ускорят производство фильмов и сериалов за счёт прикладных AI-решений. Призовой фонд — 1 125 000 рублей.

Регистрация до 31 октября: https://cnrlink.com/winkaichallengemlbooks

Приглашаем на первый в России хакатон, посвящённый применению ИИ в кинопроизводстве, ML-инженеров, backend- и frontend-разработчиков, специалистов в DevOps, MLOps, а также инженеров в сфере мультимедиа.

🔸 Трек 1. Разработайте решение, которое на основе сценария проведет анализ каждой сцены, определит место действия, персонажей, реквизит и поможет оптимизировать планирование съемок.
🔸 Трек 2. Обучите модель определять возрастную категорию контента и выделять ключевые сцены, влияющие на рейтинг. Решение облегчит адаптацию контента для разных медиа.  
🔸 Трек 3. Создайте систему, которая превращает текст сценария в превиз с эскизами, ключевыми кадрами, анимацией и возможностью командного редактирования. 

Зарегистрируйтесь и создайте ИИ-ассистента для кинопроизводства: https://cnrlink.com/winkaichallengemlbooks
3
🔥 Разбор того, как Mixture-of-Experts (MoE) LLM можно сделать реально дешёвыми, если подогнать архитектуру под железо.

В чём проблема
- MoE включает только часть экспертов на токен → экономия compute.
- Но при больших batch size растут коммуникации и память:
- больше экспертов грузится,
- KV-кэш раздувается,
- узким местом становится память и сеть.

Решение - expert parallelism
- Эксперты размазаны по многим GPU.
- Токен идёт к top-N экспертам + shared-эксперт.
- В DeepSeek: 8 экспертов из 256 на слой × 58 слоёв.

Чтобы справиться с коммуникациями:
- внимание остаётся data parallel (кэш сидит на одном GPU),
- гоняются только маленькие вектора активаций,
- два микробатча: один считает, другой общается,
- горячие эксперты дублируются,
- токены стараются держать экспертов в пределах одного узла.

Оптимизации
- multi-head latent attention → сжатие KV-кэша до ~70KB вместо сотен KB.
- перестройка математики внимания → меньше вычислений при длинных контекстах.
- prefill и decode разделены, кэш даёт ~56% хитов → меньше затрат.

Экономика
- Стоимость = $/GPU-час ÷ токены/час.
- Дешевле при больших batch size, быстрых interconnect, большем числе GPU.
- Но если сервис обещает 20 токенов/сек на юзера → батчи меньше, цена выше.

Практика
- NVLink кластеры масштабируются отлично.
- InfiniBand между DGX - bottleneck.
- 72 GPU при batch 64 → миллиарды токенов в день за ~$0.40 / 1M токенов.

Итог
MoE становятся дёшевыми при:
- больших батчах,
- сжатом KV-кэше,
- грамотном роутинге,
- разделении префилла и декода,
- быстрых interconnect.

Это даёт гибкость: быстрый чат продаётся дороже, а bulk-генерация (синтетика, fine-tune) идёт почти по себестоимости.

https://www.tensoreconomics.com/p/moe-inference-economics-from-first
👍32
📘 Learning Deep Representations of Data Distributions — новая бесплатная книга от исследователей UC Berkeley (Sam Buchanan, Druv Pai, Peng Wang, Yi Ma).

Главная идея книги - показать, почему и как глубокие нейросети учатся извлекать сжатые, информативные представления сложных данных, и что у них внутри:

💡В книге вы найдите:

🟠простое объяснение фундаментальных принципов архитектур нейросетей через оптимизацию и теорию информации.
🟠как модели формируют инвариантные и устойчивые представления
🟠связь с PCA, автоэнкодерами и дифференцируемыми отображениями — то есть, как нейросети по сути обобщают классические методы сжатия данных и учатся находить их оптимальное представление
🟠взгляд на обучение через энергию, энтропию и структуру данных
🟠свежие идеи для понимания LLM и генеративных моделей

📖 Читать онлайн: ma-lab-berkeley.github.io/deep-representation-learning-book

🖥 Github: https://github.com/Ma-Lab-Berkeley/deep-representation-learning-book

@ai_machinelearning_big_data

#book #deeplearning #representationlearning #ucberkeley #machinelearning
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
4👍3
🙂 Почему зрители привязываются к ИИ-стримерам и как это меняет взаимодействие

Исследование, в котором анализирует феномен Neuro-sama – виртуального стримера, полностью управляемого крупной языковой моделью.
Neuro-sama ведёт трансляции от лица анимированного аватара, общаясь с чатом в реальном времени без участия человека.

Исследователи использовали опросы, интервью и анализ логов чата, чтобы понять, как зрители открывают для себя ИИ-стримера, почему остаются и как формируется эмоциональная связь.

🧩 Ключевые наблюдения:
- Зрители приходят из любопытства: их привлекает новизна, скорость ответов и непредсказуемость поведения ИИ.
- Они остаются из-за эмоциональных моментов, которые создают чувство общности и групповую идентичность вокруг персонажа.
- Несмотря на осознание, что это программа, фанаты общаются с ИИ как с живым существом, формируя социальную привязанность.
- Для зрителей аутентичность = стабильность, а не человечность. Последовательное поведение и узнаваемая личность важнее реалистичных эмоций.
- В чате преобладают прямые вопросы и команды, превращая стрим в интерактивный тест ИИ.
- 85% платных сообщений используются, чтобы направлять поведение Neuro-sama, делая зрителей соавторами контента.

Основная дилемма:
Создателям нужно сохранять устойчивый характер персонажа, но при этом давать пространство для импровизации и неожиданности.
Слишком предсказуемый ИИ теряет интерес, но слишком изменчивый разрушает ощущение «личности».

В итоге такие проекты показывают, как человеческое восприятие аутентичности постепенно адаптируется: нам всё меньше нужна «реальность», и всё больше – постоянство и вовлечённость, даже если источник этой личности — алгоритм.

📌 Подробнее: https://arxiv.org/abs/2509.10427
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
8👍2
🧠 LLM не как компилятор, а как архитектор?

Можно ли заставить LLM превратить макет из Figma в рабочий UI-код? Ребята из Яндекс Go взялись за эту задачу и написали отличный отчёт о своём пути.

🤯 Они честно рассказывают о провалах: от промпта на 400к токенов, который не влезал в контекст, до чёрного ящика Agent IDE и сложного RAG-конвейера с циклом обратной связи.

В итоге они пришли к элегантному решению: перестали требовать от модели идеальный синтаксис. LLM теперь генерирует описание интерфейса на простом YAML, а детерминированный транслятор превращает его в 100% компилируемый код.

Это крутая инженерная история о том, как найти предел возможностей LLM и обойти его с помощью системного дизайна.

Читайте статью здесь
3
✔️ Новый подход к «мышлению» малых моделей

Исследователи представили метод, позволяющий небольшим моделям рассуждать глубже - за счёт повторного объединения собственных решений.

С помощью этого цикла 4B-модель достигает уровня гораздо более крупных reasoning-моделей.

Идея основана на test-time scaling - использовании дополнительного вычислительного времени при ответе для повышения точности.

Recursive Self-Aggregation (RSA) хранит пул цепочек решений, выбирает небольшие группы, комбинирует удачные фрагменты и повторяет процесс.
Так модель «вытягивает» правильные шаги даже из неудачных попыток и улучшает их с каждым циклом.

Три параметра управляют поведением:
- pool size - охват решений
- group size - скорость смешивания
- step count - глубина размышления

Большие пулы повышают потолок качества, но требуют больше шагов или групп для распространения успешных паттернов.

Внешняя проверка не нужна - модель сама сравнивает и сшивает решения. Для выбора финального ответа достаточно простого голосования.

Дополнительно обучена aggregation-aware policy, умеющая комбинировать кандидатов - она превосходит стандартное RL и улучшает результаты в задачах по математике, коду, планированию и знаниям.

Подробнее - arxiv.org/abs/2509.26626
Please open Telegram to view this post
VIEW IN TELEGRAM
3🔥1
2025/10/09 01:10:06

❌Photos not found?❌Click here to update cache.


Back to Top
HTML Embed Code: