Telegram Group & Telegram Channel
📘 Learning Deep Representations of Data Distributions — новая бесплатная книга от исследователей UC Berkeley (Sam Buchanan, Druv Pai, Peng Wang, Yi Ma).

Главная идея книги - показать, почему и как глубокие нейросети учатся извлекать сжатые, информативные представления сложных данных, и что у них внутри:

💡В книге вы найдите:

🟠простое объяснение фундаментальных принципов архитектур нейросетей через оптимизацию и теорию информации.
🟠как модели формируют инвариантные и устойчивые представления
🟠связь с PCA, автоэнкодерами и дифференцируемыми отображениями — то есть, как нейросети по сути обобщают классические методы сжатия данных и учатся находить их оптимальное представление
🟠взгляд на обучение через энергию, энтропию и структуру данных
🟠свежие идеи для понимания LLM и генеративных моделей

📖 Читать онлайн: ma-lab-berkeley.github.io/deep-representation-learning-book

🖥 Github: https://github.com/Ma-Lab-Berkeley/deep-representation-learning-book

@ai_machinelearning_big_data

#book #deeplearning #representationlearning #ucberkeley #machinelearning
Please open Telegram to view this post
VIEW IN TELEGRAM
4👍3



group-telegram.com/machinelearning_books/1205
Create:
Last Update:

📘 Learning Deep Representations of Data Distributions — новая бесплатная книга от исследователей UC Berkeley (Sam Buchanan, Druv Pai, Peng Wang, Yi Ma).

Главная идея книги - показать, почему и как глубокие нейросети учатся извлекать сжатые, информативные представления сложных данных, и что у них внутри:

💡В книге вы найдите:

🟠простое объяснение фундаментальных принципов архитектур нейросетей через оптимизацию и теорию информации.
🟠как модели формируют инвариантные и устойчивые представления
🟠связь с PCA, автоэнкодерами и дифференцируемыми отображениями — то есть, как нейросети по сути обобщают классические методы сжатия данных и учатся находить их оптимальное представление
🟠взгляд на обучение через энергию, энтропию и структуру данных
🟠свежие идеи для понимания LLM и генеративных моделей

📖 Читать онлайн: ma-lab-berkeley.github.io/deep-representation-learning-book

🖥 Github: https://github.com/Ma-Lab-Berkeley/deep-representation-learning-book

@ai_machinelearning_big_data

#book #deeplearning #representationlearning #ucberkeley #machinelearning

BY Машиннное обучение | Наука о данных Библиотека










Share with your friend now:
group-telegram.com/machinelearning_books/1205

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

In 2018, Russia banned Telegram although it reversed the prohibition two years later. Channels are not fully encrypted, end-to-end. All communications on a Telegram channel can be seen by anyone on the channel and are also visible to Telegram. Telegram may be asked by a government to hand over the communications from a channel. Telegram has a history of standing up to Russian government requests for data, but how comfortable you are relying on that history to predict future behavior is up to you. Because Telegram has this data, it may also be stolen by hackers or leaked by an internal employee. In December 2021, Sebi officials had conducted a search and seizure operation at the premises of certain persons carrying out similar manipulative activities through Telegram channels. Multiple pro-Kremlin media figures circulated the post's false claims, including prominent Russian journalist Vladimir Soloviev and the state-controlled Russian outlet RT, according to the DFR Lab's report. These entities are reportedly operating nine Telegram channels with more than five million subscribers to whom they were making recommendations on selected listed scrips. Such recommendations induced the investors to deal in the said scrips, thereby creating artificial volume and price rise.
from us


Telegram Машиннное обучение | Наука о данных Библиотека
FROM American