Telegram Group & Telegram Channel
Не планировал еще одного поста так скоро, но пришел Костя Кноп и рассказал забавное:

Как быстро посчитать много знаков числа π, если есть калькулятор с тригонометрическими функциями (но без обратных тригонометрических)? Предлагается такой рецепт: начинаем с грубого приближения π≈3, а дальше делаем пару-тройку итераций x→x+sin(x).

Можно было бы не писать никакой программы — но раз уж тут канал про компьютерные эксперименты:


from mpmath import *
mp.dps = 200

def iterate(approx):
return approx+sin(approx)

mypi = 3
for k in range(4):
mypi = iterate(mypi)
diff = pi-mypi
print(k+1,":",nstr(mypi,50),
"diff:",nstr(diff,2))


Кто запустил код — может видеть, что через 4 итерации ошибка уже порядка 10^{-100} (!)

Ну и объяснить это не сложно: за итерацию мы заменяем π+t на π+t-sin(t), а t-sin(t)≈t³/6 — вот и увеличивается за каждую итерацию количество правильных цифр примерно втрое.

Еще можно заметить, что мы недалеко ушли от метода Ньютона (буквально метод Н. для sin(x) — это x→x-tg(x), но рядом с π это примерно то же).

Тему вычисления знаков π и т.п. наверное еще продолжим.

===

Я ничего не понимаю в библиотеках питона, а mpmath — то что сходу нашлось в гугле по моему запросу (чтобы можно было много цифр синуса считать и т.п.).



group-telegram.com/compmathweekly/8
Create:
Last Update:

Не планировал еще одного поста так скоро, но пришел Костя Кноп и рассказал забавное:

Как быстро посчитать много знаков числа π, если есть калькулятор с тригонометрическими функциями (но без обратных тригонометрических)? Предлагается такой рецепт: начинаем с грубого приближения π≈3, а дальше делаем пару-тройку итераций x→x+sin(x).

Можно было бы не писать никакой программы — но раз уж тут канал про компьютерные эксперименты:


from mpmath import *
mp.dps = 200

def iterate(approx):
return approx+sin(approx)

mypi = 3
for k in range(4):
mypi = iterate(mypi)
diff = pi-mypi
print(k+1,":",nstr(mypi,50),
"diff:",nstr(diff,2))


Кто запустил код — может видеть, что через 4 итерации ошибка уже порядка 10^{-100} (!)

Ну и объяснить это не сложно: за итерацию мы заменяем π+t на π+t-sin(t), а t-sin(t)≈t³/6 — вот и увеличивается за каждую итерацию количество правильных цифр примерно втрое.

Еще можно заметить, что мы недалеко ушли от метода Ньютона (буквально метод Н. для sin(x) — это x→x-tg(x), но рядом с π это примерно то же).

Тему вычисления знаков π и т.п. наверное еще продолжим.

===

Я ничего не понимаю в библиотеках питона, а mpmath — то что сходу нашлось в гугле по моему запросу (чтобы можно было много цифр синуса считать и т.п.).

BY Компьютерная математика Weekly


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/compmathweekly/8

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

"And that set off kind of a battle royale for control of the platform that Durov eventually lost," said Nathalie Maréchal of the Washington advocacy group Ranking Digital Rights. Such instructions could actually endanger people — citizens receive air strike warnings via smartphone alerts. He adds: "Telegram has become my primary news source." Stocks dropped on Friday afternoon, as gains made earlier in the day on hopes for diplomatic progress between Russia and Ukraine turned to losses. Technology stocks were hit particularly hard by higher bond yields. The Dow Jones Industrial Average fell 230 points, or 0.7%. Meanwhile, the S&P 500 and the Nasdaq Composite dropped 1.3% and 2.2%, respectively. All three indexes began the day with gains before selling off.
from tw


Telegram Компьютерная математика Weekly
FROM American