Telegram Group & Telegram Channel
Mathematics for Data Science Roadmap

Mathematics is the backbone of data science, machine learning, and AI. This roadmap covers essential topics in a structured way.


---

1. Prerequisites

Basic Arithmetic (Addition, Multiplication, etc.)
Order of Operations (BODMAS/PEMDAS)
Basic Algebra (Equations, Inequalities)
Logical Reasoning (AND, OR, XOR, etc.)


---

2. Linear Algebra (For ML & Deep Learning)

🔹 Vectors & Matrices (Dot Product, Transpose, Inverse)
🔹 Linear Transformations (Eigenvalues, Eigenvectors, Determinants)
🔹 Applications: PCA, SVD, Neural Networks

📌 Resources: "Linear Algebra Done Right" – Axler, 3Blue1Brown Videos


---

3. Probability & Statistics (For Data Analysis & ML)

🔹 Probability: Bayes’ Theorem, Distributions (Normal, Poisson)
🔹 Statistics: Mean, Variance, Hypothesis Testing, Regression
🔹 Applications: A/B Testing, Feature Selection

📌 Resources: "Think Stats" – Allen Downey, MIT OCW


---

4. Calculus (For Optimization & Deep Learning)

🔹 Differentiation: Chain Rule, Partial Derivatives
🔹 Integration: Definite & Indefinite Integrals
🔹 Vector Calculus: Gradients, Jacobian, Hessian
🔹 Applications: Gradient Descent, Backpropagation

📌 Resources: "Calculus" – James Stewart, Stanford ML Course


---

5. Discrete Mathematics (For Algorithms & Graphs)

🔹 Combinatorics: Permutations, Combinations
🔹 Graph Theory: Adjacency Matrices, Dijkstra’s Algorithm
🔹 Set Theory & Logic: Boolean Algebra, Induction

📌 Resources: "Discrete Mathematics and Its Applications" – Rosen


---

6. Optimization (For Model Training & Tuning)

🔹 Gradient Descent & Variants (SGD, Adam, RMSProp)
🔹 Convex Optimization
🔹 Lagrange Multipliers

📌 Resources: "Convex Optimization" – Stephen Boyd


---

7. Information Theory (For Feature Engineering & Model Compression)

🔹 Entropy & Information Gain (Decision Trees)
🔹 Kullback-Leibler Divergence (Distribution Comparison)
🔹 Shannon’s Theorem (Data Compression)

📌 Resources: "Elements of Information Theory" – Cover & Thomas


---

8. Advanced Topics (For AI & Reinforcement Learning)

🔹 Fourier Transforms (Signal Processing, NLP)
🔹 Markov Decision Processes (MDPs) (Reinforcement Learning)
🔹 Bayesian Statistics & Probabilistic Graphical Models

📌 Resources: "Pattern Recognition and Machine Learning" – Bishop


---

Learning Path

🔰 Beginner:

Focus on Probability, Statistics, and Linear Algebra
Learn NumPy, Pandas, Matplotlib

Intermediate:

Study Calculus & Optimization
Apply concepts in ML (Scikit-learn, TensorFlow, PyTorch)

🚀 Advanced:

Explore Discrete Math, Information Theory, and AI models
Work on Deep Learning & Reinforcement Learning projects

💡 Tip: Solve problems on Kaggle, Leetcode, Project Euler and watch 3Blue1Brown, MIT OCW videos.



group-telegram.com/datascience_bds/779
Create:
Last Update:

Mathematics for Data Science Roadmap

Mathematics is the backbone of data science, machine learning, and AI. This roadmap covers essential topics in a structured way.


---

1. Prerequisites

Basic Arithmetic (Addition, Multiplication, etc.)
Order of Operations (BODMAS/PEMDAS)
Basic Algebra (Equations, Inequalities)
Logical Reasoning (AND, OR, XOR, etc.)


---

2. Linear Algebra (For ML & Deep Learning)

🔹 Vectors & Matrices (Dot Product, Transpose, Inverse)
🔹 Linear Transformations (Eigenvalues, Eigenvectors, Determinants)
🔹 Applications: PCA, SVD, Neural Networks

📌 Resources: "Linear Algebra Done Right" – Axler, 3Blue1Brown Videos


---

3. Probability & Statistics (For Data Analysis & ML)

🔹 Probability: Bayes’ Theorem, Distributions (Normal, Poisson)
🔹 Statistics: Mean, Variance, Hypothesis Testing, Regression
🔹 Applications: A/B Testing, Feature Selection

📌 Resources: "Think Stats" – Allen Downey, MIT OCW


---

4. Calculus (For Optimization & Deep Learning)

🔹 Differentiation: Chain Rule, Partial Derivatives
🔹 Integration: Definite & Indefinite Integrals
🔹 Vector Calculus: Gradients, Jacobian, Hessian
🔹 Applications: Gradient Descent, Backpropagation

📌 Resources: "Calculus" – James Stewart, Stanford ML Course


---

5. Discrete Mathematics (For Algorithms & Graphs)

🔹 Combinatorics: Permutations, Combinations
🔹 Graph Theory: Adjacency Matrices, Dijkstra’s Algorithm
🔹 Set Theory & Logic: Boolean Algebra, Induction

📌 Resources: "Discrete Mathematics and Its Applications" – Rosen


---

6. Optimization (For Model Training & Tuning)

🔹 Gradient Descent & Variants (SGD, Adam, RMSProp)
🔹 Convex Optimization
🔹 Lagrange Multipliers

📌 Resources: "Convex Optimization" – Stephen Boyd


---

7. Information Theory (For Feature Engineering & Model Compression)

🔹 Entropy & Information Gain (Decision Trees)
🔹 Kullback-Leibler Divergence (Distribution Comparison)
🔹 Shannon’s Theorem (Data Compression)

📌 Resources: "Elements of Information Theory" – Cover & Thomas


---

8. Advanced Topics (For AI & Reinforcement Learning)

🔹 Fourier Transforms (Signal Processing, NLP)
🔹 Markov Decision Processes (MDPs) (Reinforcement Learning)
🔹 Bayesian Statistics & Probabilistic Graphical Models

📌 Resources: "Pattern Recognition and Machine Learning" – Bishop


---

Learning Path

🔰 Beginner:

Focus on Probability, Statistics, and Linear Algebra
Learn NumPy, Pandas, Matplotlib

Intermediate:

Study Calculus & Optimization
Apply concepts in ML (Scikit-learn, TensorFlow, PyTorch)

🚀 Advanced:

Explore Discrete Math, Information Theory, and AI models
Work on Deep Learning & Reinforcement Learning projects

💡 Tip: Solve problems on Kaggle, Leetcode, Project Euler and watch 3Blue1Brown, MIT OCW videos.

BY Data science/ML/AI


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/datascience_bds/779

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

On Feb. 27, however, he admitted from his Russian-language account that "Telegram channels are increasingly becoming a source of unverified information related to Ukrainian events." Such instructions could actually endanger people — citizens receive air strike warnings via smartphone alerts. As the war in Ukraine rages, the messaging app Telegram has emerged as the go-to place for unfiltered live war updates for both Ukrainian refugees and increasingly isolated Russians alike. Since January 2022, the SC has received a total of 47 complaints and enquiries on illegal investment schemes promoted through Telegram. These fraudulent schemes offer non-existent investment opportunities, promising very attractive and risk-free returns within a short span of time. They commonly offer unrealistic returns of as high as 1,000% within 24 hours or even within a few hours. But Telegram says people want to keep their chat history when they get a new phone, and they like having a data backup that will sync their chats across multiple devices. And that is why they let people choose whether they want their messages to be encrypted or not. When not turned on, though, chats are stored on Telegram's services, which are scattered throughout the world. But it has "disclosed 0 bytes of user data to third parties, including governments," Telegram states on its website.
from tw


Telegram Data science/ML/AI
FROM American