Telegram Group & Telegram Channel
Бизнес на LLM
Когда мы в Standard Data начали делать проекты на LLM, казалось, ключевая компетенция — глубокое знание самих моделей: подготовка данных, prompt-инжиниринг, дообучение, эксперименты с агентами и тд. Но реальность быстро скорректировала картинку.

Каждое внедрение LLM-решения в бизнес — это 30-50% работы с ключевой частью системы, с «LLM-мозгами», и 50-70% традиционной разработки и интеграции.

Это хорошо видно на проектах с внедрением образовательных ИИ-ассистентов, которые помогают быстро отвечать на вопросы студентов. У каждой образовательной компании свой набор используемых технологий, свой подход к взаимодействию со слушателями: кто-то общается прямо на платформе, кто-то использует Telegram, а кто-то — старый добрый email. Казалось бы, достаточно сделать API, в которое приходят вопросы и возвращаются LLM-ответы. Но нет.

Отдельная большая задача — это качественная интеграция решения в текущие процессы компании-заказчика. Для начала потребуется сильная продуктовая экспертиза: нужно погрузиться в бизнес заказчика, понять, как и что работает прямо сейчас. Предложить, как оптимально встроить LLM-решение в текущие процессы.

Далее — классическая разработка. После согласования продуктовой части начинается большой блок технических задач. Это проектирование интерфейсов, обработка и маршрутизация запросов, кастомные коннекторы под специфические системы заказчика, мониторинг, масштабирование, а также интеграция «LLM-мозгов» с текущими CRM, LMS и другими внутренними инструментами компании.

Бизнес на LLM — это не просто про сами модели. Чем лучше ты умеешь интегрировать решения в текущие процессы и системы заказчика, тем выше ценность твоей команды.



group-telegram.com/experiment_ai/72
Create:
Last Update:

Бизнес на LLM
Когда мы в Standard Data начали делать проекты на LLM, казалось, ключевая компетенция — глубокое знание самих моделей: подготовка данных, prompt-инжиниринг, дообучение, эксперименты с агентами и тд. Но реальность быстро скорректировала картинку.

Каждое внедрение LLM-решения в бизнес — это 30-50% работы с ключевой частью системы, с «LLM-мозгами», и 50-70% традиционной разработки и интеграции.

Это хорошо видно на проектах с внедрением образовательных ИИ-ассистентов, которые помогают быстро отвечать на вопросы студентов. У каждой образовательной компании свой набор используемых технологий, свой подход к взаимодействию со слушателями: кто-то общается прямо на платформе, кто-то использует Telegram, а кто-то — старый добрый email. Казалось бы, достаточно сделать API, в которое приходят вопросы и возвращаются LLM-ответы. Но нет.

Отдельная большая задача — это качественная интеграция решения в текущие процессы компании-заказчика. Для начала потребуется сильная продуктовая экспертиза: нужно погрузиться в бизнес заказчика, понять, как и что работает прямо сейчас. Предложить, как оптимально встроить LLM-решение в текущие процессы.

Далее — классическая разработка. После согласования продуктовой части начинается большой блок технических задач. Это проектирование интерфейсов, обработка и маршрутизация запросов, кастомные коннекторы под специфические системы заказчика, мониторинг, масштабирование, а также интеграция «LLM-мозгов» с текущими CRM, LMS и другими внутренними инструментами компании.

Бизнес на LLM — это не просто про сами модели. Чем лучше ты умеешь интегрировать решения в текущие процессы и системы заказчика, тем выше ценность твоей команды.

BY Эксперименты с ИИ


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/experiment_ai/72

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

"Like the bombing of the maternity ward in Mariupol," he said, "Even before it hits the news, you see the videos on the Telegram channels." In addition, Telegram now supports the use of third-party streaming tools like OBS Studio and XSplit to broadcast live video, allowing users to add overlays and multi-screen layouts for a more professional look. And indeed, volatility has been a hallmark of the market environment so far in 2022, with the S&P 500 still down more than 10% for the year-to-date after first sliding into a correction last month. The CBOE Volatility Index, or VIX, has held at a lofty level of more than 30. On Feb. 27, however, he admitted from his Russian-language account that "Telegram channels are increasingly becoming a source of unverified information related to Ukrainian events." The next bit isn’t clear, but Durov reportedly claimed that his resignation, dated March 21st, was an April Fools’ prank. TechCrunch implies that it was a matter of principle, but it’s hard to be clear on the wheres, whos and whys. Similarly, on April 17th, the Moscow Times quoted Durov as saying that he quit the company after being pressured to reveal account details about Ukrainians protesting the then-president Viktor Yanukovych.
from tw


Telegram Эксперименты с ИИ
FROM American