Telegram Group & Telegram Channel
DenseAttention: No-Compromise Exact All NxN Interactions Algorithm with O(N) Space and Time Complexity

Возможны ли нейросети без нелинейностей? Казалось бы нет, ведь линейная комбинация линейных отображений есть линейное отображение. А возможно ли сделать трансформер только из матричных умножений - наиболее эффективных по вычислениям и с возможностью параллелизма, которые способны решить неэффективность работы архитектуры? И самое главное - не потерять при этом точность работы трансформера📊

В этой статье предлагается новая архитектура DenseAttention Network (DANet), которая решает основные проблемы стандартной архитектуры Transformer: низкую эффективность по вычислениям и памяти, а также избавляется от квадратичной сложности по длине последовательности.

DenseAttention устраняет компоненты, ограничивающие память, такие как Softmax и LayerNorm, сохраняя при этом точные взаимодействия между токенами. Это позволяет достичь вычислительной сложности O(N) или O(N^2), что вычислительно превосходит стандартную архитектуру, особенно на длинных последовательностях. Для предотвращения числовой нестабильности вводится MaxNormActivation, а для замены RoPE предлагается новая функция Cosine Relative Positional Embeddings (Cosine RelPE), которая повышает эффективность работы модели.

DenseAttention показывает высокую скорость на малых последовательностях и значительно превосходит FlashAttention на больших контекстах. Обучение моделей на последовательностях длиной до 16K демонстрирует производительность, сопоставимую или превосходящую BERT-large, с улучшенной скоростью и эффективностью. Модель достигает высоких результатов на LRA-бенчмарке среди архитектур на базе Transformer.

Подробный разбор статьи читайте в Teletype (время чтения 15 минут)

Автор статьи 👉 @andrewargatkiny

Читать больше в Teletype 🔄

GitHub DenseAttention 🖥
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/kitty_bytes/26
Create:
Last Update:

DenseAttention: No-Compromise Exact All NxN Interactions Algorithm with O(N) Space and Time Complexity

Возможны ли нейросети без нелинейностей? Казалось бы нет, ведь линейная комбинация линейных отображений есть линейное отображение. А возможно ли сделать трансформер только из матричных умножений - наиболее эффективных по вычислениям и с возможностью параллелизма, которые способны решить неэффективность работы архитектуры? И самое главное - не потерять при этом точность работы трансформера📊

В этой статье предлагается новая архитектура DenseAttention Network (DANet), которая решает основные проблемы стандартной архитектуры Transformer: низкую эффективность по вычислениям и памяти, а также избавляется от квадратичной сложности по длине последовательности.

DenseAttention устраняет компоненты, ограничивающие память, такие как Softmax и LayerNorm, сохраняя при этом точные взаимодействия между токенами. Это позволяет достичь вычислительной сложности O(N) или O(N^2), что вычислительно превосходит стандартную архитектуру, особенно на длинных последовательностях. Для предотвращения числовой нестабильности вводится MaxNormActivation, а для замены RoPE предлагается новая функция Cosine Relative Positional Embeddings (Cosine RelPE), которая повышает эффективность работы модели.

DenseAttention показывает высокую скорость на малых последовательностях и значительно превосходит FlashAttention на больших контекстах. Обучение моделей на последовательностях длиной до 16K демонстрирует производительность, сопоставимую или превосходящую BERT-large, с улучшенной скоростью и эффективностью. Модель достигает высоких результатов на LRA-бенчмарке среди архитектур на базе Transformer.

Подробный разбор статьи читайте в Teletype (время чтения 15 минут)

Автор статьи 👉 @andrewargatkiny

Читать больше в Teletype 🔄

GitHub DenseAttention 🖥

BY Kitty Bytes AI




Share with your friend now:
group-telegram.com/kitty_bytes/26

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Telegram, which does little policing of its content, has also became a hub for Russian propaganda and misinformation. Many pro-Kremlin channels have become popular, alongside accounts of journalists and other independent observers. Telegram has gained a reputation as the “secure” communications app in the post-Soviet states, but whenever you make choices about your digital security, it’s important to start by asking yourself, “What exactly am I securing? And who am I securing it from?” These questions should inform your decisions about whether you are using the right tool or platform for your digital security needs. Telegram is certainly not the most secure messaging app on the market right now. Its security model requires users to place a great deal of trust in Telegram’s ability to protect user data. For some users, this may be good enough for now. For others, it may be wiser to move to a different platform for certain kinds of high-risk communications. Multiple pro-Kremlin media figures circulated the post's false claims, including prominent Russian journalist Vladimir Soloviev and the state-controlled Russian outlet RT, according to the DFR Lab's report. One thing that Telegram now offers to all users is the ability to “disappear” messages or set remote deletion deadlines. That enables users to have much more control over how long people can access what you’re sending them. Given that Russian law enforcement officials are reportedly (via Insider) stopping people in the street and demanding to read their text messages, this could be vital to protect individuals from reprisals. Crude oil prices edged higher after tumbling on Thursday, when U.S. West Texas intermediate slid back below $110 per barrel after topping as much as $130 a barrel in recent sessions. Still, gas prices at the pump rose to fresh highs.
from tw


Telegram Kitty Bytes AI
FROM American