Telegram Group & Telegram Channel
Тут Meta релизнули новую либу для обучения моделей - optimizers и я решил рассказать вам про основные особенности чуть более подробно, чем это сделали @data_secrets 😎

Для чего она нужна? Optimizers сильно расширяют функционал контроля обучения моделей для ускорения их сходимости. По видимому, в бигтехах устали от самописно-костыльных решений и Meta решила помочь всем и сразу🍷 Более того, красота этого оптимизатора в том, что его можно встроить в существующий пайплайн обучения модели, улучшив сходимоть обучаемой модели.

На данный момент в либе единственным оптимизатором является Distributed Shampoo, с помощью которого реализованы остальные методы оптимизации: SGD, Adagrad, RMSProp и Adam. К нему добавили новые гиперпараметры max_preconditioner_dim и precondition_frequency , которые позволяют регулировать размерность и частоту обновления матрицы preconditioner - оператора, который используется для преобразования задачи оптимизации, чтобы ускорить сходимость, изменяя масштаб его градиентов. Ограничивая его размер, мы регулируем объем вычисления и затраты на память, что может быть важно при обучении больших моделей. Частота обновления preconditioner влияет на точность сходимости, однако при высоких значениях требует больше памяти. Да, админу пришлось хорошо вспомнить линал, чтобы разобраться в подкапотных тонкостях😱

Порадовало, что Distributed Shampoo поддерживает разные варианты распределенного обучения, включая DDP и FSDP. Для DDP предусмотрена поддержка ZeRO-1, что снижает требования к памяти и времени выполнения. Однако для FSDP требуется использование дополнительной памяти для восстановления исходных параметров. Кстати в DDP можно обучать квантизованные модельки (BF16, FP16, FP32)🕺

Либа поддерживает чекпоинты, но в типе DTensor, который не поддерживается торчом, поэтому нужно применять методы distributed_state_dict и load_distributed_state_dict 🥺

Теперь основной вопрос - как эту всю красоту использовать?

Имея основной метод оптимизации, мы заменяем его на конфиг метода из либы (i.e. SGDGraftingConfig ), оставляя при этом старые значения некоторых гиперпараметров. Другие гиперпараметры тюнятся для повышения эффективности сходимости и этому делу посвящена целая глава в ридми проекта. Все это дело оборачивается в DistributedShampoo , который и является основным методом оптимизации.

Но что именно происходит, когда мы заменяем наш метод оптимизации на Shampoo? Понятно, что имея такой инструментарий, мы хотим применять этот оптимизатор для уточнения сходимости ранее обученных моделей. Но как подобрать верные параметры Shampoo, чтобы он не дестабилизировал модель, а действительно улучшил ее? Зная гиперпараметры заменяемого оптимизатора, мы можем вычислить последовательность и размер шагов обучения и приблизить Shampoo к этому процессу. На языке линала это происходит так:

1) Мы берём норму шага обучения из прошлого оптимизатора
2) Нормализуем шаг Shampoo, чтобы он имел ту же норму
3) Масштабируем нормализованный шаг Shampoo, умножая его на произведение нормы шага нашего оптимизатора и коэффициента обучения

В результате мы получили новый оптимизатор, настроенный на обучение нашей модели с любого этапа, который может обеспечить нам лучшую сходимость модели👏
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/kitty_bytes/27
Create:
Last Update:

Тут Meta релизнули новую либу для обучения моделей - optimizers и я решил рассказать вам про основные особенности чуть более подробно, чем это сделали @data_secrets 😎

Для чего она нужна? Optimizers сильно расширяют функционал контроля обучения моделей для ускорения их сходимости. По видимому, в бигтехах устали от самописно-костыльных решений и Meta решила помочь всем и сразу🍷 Более того, красота этого оптимизатора в том, что его можно встроить в существующий пайплайн обучения модели, улучшив сходимоть обучаемой модели.

На данный момент в либе единственным оптимизатором является Distributed Shampoo, с помощью которого реализованы остальные методы оптимизации: SGD, Adagrad, RMSProp и Adam. К нему добавили новые гиперпараметры max_preconditioner_dim и precondition_frequency , которые позволяют регулировать размерность и частоту обновления матрицы preconditioner - оператора, который используется для преобразования задачи оптимизации, чтобы ускорить сходимость, изменяя масштаб его градиентов. Ограничивая его размер, мы регулируем объем вычисления и затраты на память, что может быть важно при обучении больших моделей. Частота обновления preconditioner влияет на точность сходимости, однако при высоких значениях требует больше памяти. Да, админу пришлось хорошо вспомнить линал, чтобы разобраться в подкапотных тонкостях😱

Порадовало, что Distributed Shampoo поддерживает разные варианты распределенного обучения, включая DDP и FSDP. Для DDP предусмотрена поддержка ZeRO-1, что снижает требования к памяти и времени выполнения. Однако для FSDP требуется использование дополнительной памяти для восстановления исходных параметров. Кстати в DDP можно обучать квантизованные модельки (BF16, FP16, FP32)🕺

Либа поддерживает чекпоинты, но в типе DTensor, который не поддерживается торчом, поэтому нужно применять методы distributed_state_dict и load_distributed_state_dict 🥺

Теперь основной вопрос - как эту всю красоту использовать?

Имея основной метод оптимизации, мы заменяем его на конфиг метода из либы (i.e. SGDGraftingConfig ), оставляя при этом старые значения некоторых гиперпараметров. Другие гиперпараметры тюнятся для повышения эффективности сходимости и этому делу посвящена целая глава в ридми проекта. Все это дело оборачивается в DistributedShampoo , который и является основным методом оптимизации.

Но что именно происходит, когда мы заменяем наш метод оптимизации на Shampoo? Понятно, что имея такой инструментарий, мы хотим применять этот оптимизатор для уточнения сходимости ранее обученных моделей. Но как подобрать верные параметры Shampoo, чтобы он не дестабилизировал модель, а действительно улучшил ее? Зная гиперпараметры заменяемого оптимизатора, мы можем вычислить последовательность и размер шагов обучения и приблизить Shampoo к этому процессу. На языке линала это происходит так:

1) Мы берём норму шага обучения из прошлого оптимизатора
2) Нормализуем шаг Shampoo, чтобы он имел ту же норму
3) Масштабируем нормализованный шаг Shampoo, умножая его на произведение нормы шага нашего оптимизатора и коэффициента обучения

В результате мы получили новый оптимизатор, настроенный на обучение нашей модели с любого этапа, который может обеспечить нам лучшую сходимость модели👏

BY Kitty Bytes AI


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/kitty_bytes/27

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

As a result, the pandemic saw many newcomers to Telegram, including prominent anti-vaccine activists who used the app's hands-off approach to share false information on shots, a study from the Institute for Strategic Dialogue shows. "This time we received the coordinates of enemy vehicles marked 'V' in Kyiv region," it added. "Russians are really disconnected from the reality of what happening to their country," Andrey said. "So Telegram has become essential for understanding what's going on to the Russian-speaking world." Apparently upbeat developments in Russia's discussions with Ukraine helped at least temporarily send investors back into risk assets. Russian President Vladimir Putin said during a meeting with his Belarusian counterpart Alexander Lukashenko that there were "certain positive developments" occurring in the talks with Ukraine, according to a transcript of their meeting. Putin added that discussions were happening "almost on a daily basis." Despite Telegram's origins, its approach to users' security has privacy advocates worried.
from tw


Telegram Kitty Bytes AI
FROM American