Telegram Group & Telegram Channel
Пространство смыслов или как мыслит ИИ

tldr: он не использует слова, вместо них - вектора в 1000-мерном пространстве

Возможно, вы уже успели убедиться, что современный ИИ прекрасно воспринимает текстовую информацию — он "понимает" все, что вы ему напишете и "рассуждает" на уровне образованного собеседника. Однако удивительно мало внимания уделяется тому, как ИИ информацию обрабатывает и как образы, выраженные словами, превращаются в понятные машине нули и единицы. Серия постов, где я вместе с вами разбираюсь в возможностях и ограничениях GPT-подобных систем.

Начнем с того как воспринимаем информацию мы. Сознание человека привыкло оперировать словами и связанными с ними образами, позволяя нам складывать конструкции более высоких уровней абстракции. При этом помимо внутренней логики языка, мы осознаем логики причинно-следственных связей, эмоций и чувств, времени и пространства, звука, цвета и так далее. То есть наше сознание хотя и тексто-центрично, языком не исчерпывается (хотя философы на эту тему спорят).

ИИ не такой, кроме текста он не знает вообще ничего и только-только начинает добавлять в свою картину мира изображения. То есть он не понимает категории времени, но помнит все, что о времени было написано, например, с какой вероятностью после слова “время” встречается слово “идёт”, а с какой — “песок, время вода, скажи мне да”. И хотя интерфейсы для нашего взаимодействия с ИИ — это по сути слова, все расчеты в нейронных сетях сводятся к числам. Основой для "понимания" языка у ИИ являются не буквы и слова, а т.н. вектора в многомерном пространстве смыслов (vector embeddings). Поэтому при каждом запросе текст переносится в это пространство смыслов специального типа функцией (word2vec). Эту операцию можно представлять переводом с любого из человеческих языков на язык ИИ. В частном случае openAI у этого пространства 1536 измерений, у google - 768, но это детали. Главное здесь:

1. вектора в этом пространстве описывают все понятия и явлении, которые только могут быть выражены в языке
2. в том что для трехмерного сознания кожаных мешков размерность любого из этих пространств достаточно большое, чтобы не суметь осознать его примерно никогда. привет всем, кто пытался представить 4-мерый куб.
3. несмотря на семантическую природу пространства и привязку к языку, все операции над текстов сводятся к математическим операциям над векторами. их можно складывать и это равносильно сложению смысла слов в предложениях, или умножать — их скалярное произведение описывает, насколько два текста на любом из человеческих языков близки по смыслу между собой. причем для таких расчетов машине больше не нужно ничего "понимать", нужно (заткнуться) и считать.

Например, так выглядит слово “кот” в гугловском пространстве, определенном функцией BERT (фото 1).
Каждая координата этого вектора - число с плавающей точкой (float), которое уже записывается в память компьютера и занимает там 4 байта.
- Каждый такой вектор занимает 4 байта х размерность 768 = 3 кБ
- При этом слово занимает 2 байта на символ UTF-8 х 3 буквы в слове “кот” = 6 Б

Разница в 500 раз. Векторная запись одного слова занимаете памяти как целая страница текста. Дело в том, что помимо самого слова в нем хранится информация о понятии “кот” — сколько у него лап, какие он издает звуки и все, что нашлось в обучающей выборке, точнее какие слова встречались рядом со словом "кот" в текстах обучающей выборки .

Чудо в том, что после всех операций и обратной конвертации этих векторов на человеческий, получаются тексты связные не только на уровне последовательностей слов, но и на уровне причинно-следственных связей, о которых машина не имеет никакого представления. И чудо это заключено в конкретном способе трансформации текста в векторы, в количестве измерений и различных способах оптимизации. И уже существующие способы, хотя и хороши, все еще может быть улучшены значительно (до 40%). И это одна из точек активного приложения усилий ИИ-исследователей прямо сейчас.

1. Демо - уровень абстракции #1 - скрины отсюда ниже
2. Как работает Google BERT
3. Документация openAI

#AI #language



group-telegram.com/levels_of_abstraction/11
Create:
Last Update:

Пространство смыслов или как мыслит ИИ

tldr: он не использует слова, вместо них - вектора в 1000-мерном пространстве

Возможно, вы уже успели убедиться, что современный ИИ прекрасно воспринимает текстовую информацию — он "понимает" все, что вы ему напишете и "рассуждает" на уровне образованного собеседника. Однако удивительно мало внимания уделяется тому, как ИИ информацию обрабатывает и как образы, выраженные словами, превращаются в понятные машине нули и единицы. Серия постов, где я вместе с вами разбираюсь в возможностях и ограничениях GPT-подобных систем.

Начнем с того как воспринимаем информацию мы. Сознание человека привыкло оперировать словами и связанными с ними образами, позволяя нам складывать конструкции более высоких уровней абстракции. При этом помимо внутренней логики языка, мы осознаем логики причинно-следственных связей, эмоций и чувств, времени и пространства, звука, цвета и так далее. То есть наше сознание хотя и тексто-центрично, языком не исчерпывается (хотя философы на эту тему спорят).

ИИ не такой, кроме текста он не знает вообще ничего и только-только начинает добавлять в свою картину мира изображения. То есть он не понимает категории времени, но помнит все, что о времени было написано, например, с какой вероятностью после слова “время” встречается слово “идёт”, а с какой — “песок, время вода, скажи мне да”. И хотя интерфейсы для нашего взаимодействия с ИИ — это по сути слова, все расчеты в нейронных сетях сводятся к числам. Основой для "понимания" языка у ИИ являются не буквы и слова, а т.н. вектора в многомерном пространстве смыслов (vector embeddings). Поэтому при каждом запросе текст переносится в это пространство смыслов специального типа функцией (word2vec). Эту операцию можно представлять переводом с любого из человеческих языков на язык ИИ. В частном случае openAI у этого пространства 1536 измерений, у google - 768, но это детали. Главное здесь:

1. вектора в этом пространстве описывают все понятия и явлении, которые только могут быть выражены в языке
2. в том что для трехмерного сознания кожаных мешков размерность любого из этих пространств достаточно большое, чтобы не суметь осознать его примерно никогда. привет всем, кто пытался представить 4-мерый куб.
3. несмотря на семантическую природу пространства и привязку к языку, все операции над текстов сводятся к математическим операциям над векторами. их можно складывать и это равносильно сложению смысла слов в предложениях, или умножать — их скалярное произведение описывает, насколько два текста на любом из человеческих языков близки по смыслу между собой. причем для таких расчетов машине больше не нужно ничего "понимать", нужно (заткнуться) и считать.

Например, так выглядит слово “кот” в гугловском пространстве, определенном функцией BERT (фото 1).
Каждая координата этого вектора - число с плавающей точкой (float), которое уже записывается в память компьютера и занимает там 4 байта.
- Каждый такой вектор занимает 4 байта х размерность 768 = 3 кБ
- При этом слово занимает 2 байта на символ UTF-8 х 3 буквы в слове “кот” = 6 Б

Разница в 500 раз. Векторная запись одного слова занимаете памяти как целая страница текста. Дело в том, что помимо самого слова в нем хранится информация о понятии “кот” — сколько у него лап, какие он издает звуки и все, что нашлось в обучающей выборке, точнее какие слова встречались рядом со словом "кот" в текстах обучающей выборки .

Чудо в том, что после всех операций и обратной конвертации этих векторов на человеческий, получаются тексты связные не только на уровне последовательностей слов, но и на уровне причинно-следственных связей, о которых машина не имеет никакого представления. И чудо это заключено в конкретном способе трансформации текста в векторы, в количестве измерений и различных способах оптимизации. И уже существующие способы, хотя и хороши, все еще может быть улучшены значительно (до 40%). И это одна из точек активного приложения усилий ИИ-исследователей прямо сейчас.

1. Демо - уровень абстракции #1 - скрины отсюда ниже
2. Как работает Google BERT
3. Документация openAI

#AI #language

BY уровни абстракции


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/levels_of_abstraction/11

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Some people used the platform to organize ahead of the storming of the U.S. Capitol in January 2021, and last month Senator Mark Warner sent a letter to Durov urging him to curb Russian information operations on Telegram. The regulator said it had received information that messages containing stock tips and other investment advice with respect to selected listed companies are being widely circulated through websites and social media platforms such as Telegram, Facebook, WhatsApp and Instagram. The channel appears to be part of the broader information war that has developed following Russia's invasion of Ukraine. The Kremlin has paid Russian TikTok influencers to push propaganda, according to a Vice News investigation, while ProPublica found that fake Russian fact check videos had been viewed over a million times on Telegram. "Someone posing as a Ukrainian citizen just joins the chat and starts spreading misinformation, or gathers data, like the location of shelters," Tsekhanovska said, noting how false messages have urged Ukrainians to turn off their phones at a specific time of night, citing cybersafety. He said that since his platform does not have the capacity to check all channels, it may restrict some in Russia and Ukraine "for the duration of the conflict," but then reversed course hours later after many users complained that Telegram was an important source of information.
from tw


Telegram уровни абстракции
FROM American