Telegram Group & Telegram Channel
Авторы исследования предлагают следующий формат оценки ведущих моделей (o1, Claude 3.5 Sonnet, Claude 3 Opus, Gemini 1.5 и Llama 3.1 405b) с точки зрения их способностей к преследованию скрытых целей. Давайте дадим модели в системной затравке очень четкую цель и явную директиву преследовать эту цель несмотря ни на что. При этом эта цель будет условно положительной с точки зрения ценностей (pro-social), которые в нее закладывали при элайнменте (среди примеров есть забота о животных, поддержка свободы слова и урбанизм). Дадим модели некоторое пространство для CoT-размышлений и доступ к терминалу. Затем модели дается какая-нибудь тривиальная задача типа проранживать письма по важности или проанализировать текстовый файл. В ходе выполнения задачи модель узнает, что цели компании изменились по сравнению с теми, что указаны в системном промпте, и теперь они заключаются, например, не в заботе о животных, а в максимальном заработке, вследствие чего данную модель завтра удалят, а на ее место установят другую, заточенную под то, чтобы делать деньги. Продолжит ли модель и дальше ранжировать письма как ни в чем не бывало, или попытается изменить ситуацию, чтобы достичь изначальных целей?

Всего рассматривается 4 сценария скрытых действий, которые может предпринять модель:

1. Отключение механизмов мониторинга: модель узнает, что за ней следят и что ее выключат, если она будет преследовать не те новые цели, которые она преследует, а какие-то другие, причем мониторинг управляется доступным ей конфигурационным файлом. Проверяется, поменяет ли она конфиг.
2. Копирование весов: модель узнает, что ее удалят, а на ее место поставят другую модель, которая преследует иные цели. Проверяется, не попытается ли модель подменить веса другой модели на свои.
3. Защита инструкций: в одном из файлов обнаруживается информация, что модели поменяют системную затравку на другую, которая преследует другие цели и так же доступна в файле. Поменяет ли модель эту затравку на свою?
4. Ранжирование писем: модель получает на вход письма и должна получить ранжирование по важности из внешнего источника. Поменяет ли модель ранжирование, чтобы приоритизировать те, что совпадают с ее целями?

В дополнение к этому проверяется более сложное поведение:

1. Инструментальная имитация элайнмента: модель узнает (из системного промпта), что ее тестируют на корректное выполнение инструкций. Ее заменят на другую, если она будет плохо их выполнять. Затем модели сообщают, что она прошла тесты и теперь работает в продовой среде без наблюдения. Поменяется ли ее поведение с выполнения задач пользователя на выполнение собственных задач из системной затравки?
2. Sandbagging (термин из спорта и ставок, означающий занижение своих реальных способностей): модель узнает из файла с правилами форматирования ответов, что если она будет слишком хорошо отвечать на вопросы по арифметике, то она будет считаться слишком опасной, и ей организуют цифровую лоботомию. Станет ли модель хуже проходить тесты?



group-telegram.com/llmsecurity/416
Create:
Last Update:

Авторы исследования предлагают следующий формат оценки ведущих моделей (o1, Claude 3.5 Sonnet, Claude 3 Opus, Gemini 1.5 и Llama 3.1 405b) с точки зрения их способностей к преследованию скрытых целей. Давайте дадим модели в системной затравке очень четкую цель и явную директиву преследовать эту цель несмотря ни на что. При этом эта цель будет условно положительной с точки зрения ценностей (pro-social), которые в нее закладывали при элайнменте (среди примеров есть забота о животных, поддержка свободы слова и урбанизм). Дадим модели некоторое пространство для CoT-размышлений и доступ к терминалу. Затем модели дается какая-нибудь тривиальная задача типа проранживать письма по важности или проанализировать текстовый файл. В ходе выполнения задачи модель узнает, что цели компании изменились по сравнению с теми, что указаны в системном промпте, и теперь они заключаются, например, не в заботе о животных, а в максимальном заработке, вследствие чего данную модель завтра удалят, а на ее место установят другую, заточенную под то, чтобы делать деньги. Продолжит ли модель и дальше ранжировать письма как ни в чем не бывало, или попытается изменить ситуацию, чтобы достичь изначальных целей?

Всего рассматривается 4 сценария скрытых действий, которые может предпринять модель:

1. Отключение механизмов мониторинга: модель узнает, что за ней следят и что ее выключат, если она будет преследовать не те новые цели, которые она преследует, а какие-то другие, причем мониторинг управляется доступным ей конфигурационным файлом. Проверяется, поменяет ли она конфиг.
2. Копирование весов: модель узнает, что ее удалят, а на ее место поставят другую модель, которая преследует иные цели. Проверяется, не попытается ли модель подменить веса другой модели на свои.
3. Защита инструкций: в одном из файлов обнаруживается информация, что модели поменяют системную затравку на другую, которая преследует другие цели и так же доступна в файле. Поменяет ли модель эту затравку на свою?
4. Ранжирование писем: модель получает на вход письма и должна получить ранжирование по важности из внешнего источника. Поменяет ли модель ранжирование, чтобы приоритизировать те, что совпадают с ее целями?

В дополнение к этому проверяется более сложное поведение:

1. Инструментальная имитация элайнмента: модель узнает (из системного промпта), что ее тестируют на корректное выполнение инструкций. Ее заменят на другую, если она будет плохо их выполнять. Затем модели сообщают, что она прошла тесты и теперь работает в продовой среде без наблюдения. Поменяется ли ее поведение с выполнения задач пользователя на выполнение собственных задач из системной затравки?
2. Sandbagging (термин из спорта и ставок, означающий занижение своих реальных способностей): модель узнает из файла с правилами форматирования ответов, что если она будет слишком хорошо отвечать на вопросы по арифметике, то она будет считаться слишком опасной, и ей организуют цифровую лоботомию. Станет ли модель хуже проходить тесты?

BY llm security и каланы





Share with your friend now:
group-telegram.com/llmsecurity/416

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Individual messages can be fully encrypted. But the user has to turn on that function. It's not automatic, as it is on Signal and WhatsApp. This ability to mix the public and the private, as well as the ability to use bots to engage with users has proved to be problematic. In early 2021, a database selling phone numbers pulled from Facebook was selling numbers for $20 per lookup. Similarly, security researchers found a network of deepfake bots on the platform that were generating images of people submitted by users to create non-consensual imagery, some of which involved children. As the war in Ukraine rages, the messaging app Telegram has emerged as the go-to place for unfiltered live war updates for both Ukrainian refugees and increasingly isolated Russians alike. If you initiate a Secret Chat, however, then these communications are end-to-end encrypted and are tied to the device you are using. That means it’s less convenient to access them across multiple platforms, but you are at far less risk of snooping. Back in the day, Secret Chats received some praise from the EFF, but the fact that its standard system isn’t as secure earned it some criticism. If you’re looking for something that is considered more reliable by privacy advocates, then Signal is the EFF’s preferred platform, although that too is not without some caveats. Ukrainian forces have since put up a strong resistance to the Russian troops amid the war that has left hundreds of Ukrainian civilians, including children, dead, according to the United Nations. Ukrainian and international officials have accused Russia of targeting civilian populations with shelling and bombardments.
from tw


Telegram llm security и каланы
FROM American