Telegram Group & Telegram Channel
MEG/EEG Bloopers. Part 2
#neuroimaging

Продолжаю серию пасхалок из анализа сигналов мозга. Активность, регистрируемая с помощью МЭГ и ЭЭГ, представлена ритмическими осцилляциями. Один из стандартных способов оценить, насколько те или иные ритмы выражены, это вычисление спектральной плотности мощности. Характерный спектр МЭГ/ЭЭГ (см. рис. А), представлен несколькими диапазонами частот, наиболее мощный из которых соответствует альфа-ритму (8-12 Гц). Именно его рост мы наблюдаем при закрытии глаз.

Также во многие процессы вовлекается более высокочастотный бета-ритм (12-30 Гц): его связывают с сенсомоторными задачами, вниманием, рабочей памятью и т. д. И в анализе этого ритма может крыться подвох!

Дело в том, что бета может оказаться гармоникой, порождённой альфа-ритмом. Обратимся к примеру. Смоделировав простую синусоиду в альфа-диапазоне на 10 Гц, я получаю характерный пик в спектре на 10 Гц (С). Добавив к этой синусоиде нелинейную компоненту за счёт прибавления квадрата этой синусоиды с небольшим коэффициентом, на спектре можно заметить дополнительный гармонический пик на 20 Гц (D) — а это уже бета-ритм! Похожий пик можно получить и при моделировании синусоиды непосредственно в бета-диапазоне (E).

Вклад гармоник от альфы в оценку бета-ритма, увы, не умозрительный конструкт. Во-первых, каноничный сенсомоторный мю-ритм, который по частотному диапазону соответствует альфе, обладает не синусоидальной, а аркообразной формой. И очень часто ему сопутствуют гармоники в бете. Во-вторых, стандартная затылочная альфа тоже от этого не застрахована. На графике (B) представлен спектр ЭЭГ одного человека в состоянии закрытых глаз. Наряду с пиком в альфа-ритме наблюдается пик и в бете, зависящий от выраженности альфы. Анализ этого феномена более подробно представлен в этой статье (как и некоторые полезные эвристики).

Возникает вопрос — что с этим делать?
➡️ Не ограничивать себя анализом в частотном домене: существуют дополнительные способы оценки осцилляторной активности, в т. ч. и во временном домене с выделением отдельных всплесков осцилляций и оценкой их дополнительных характеристик.
➡️ При частотном анализе учитывать отношение высоких частот к низким, смотреть на поведение спектра в целом, не изолируя отдельные частотные диапазоны.
➡️ Внимательно оценивать центральные частоты в пиках спектра: если центральная частота одного из пиков кратна центральной частоте пика в более низких диапазонах, это повод задуматься о присутствии гармоник.
➡️ Учитывать пространственные характеристики осцилляций: бета-осцилляции с максимумом мощности в затылке — это подозрительно (хотя в редких случаях и присутствие истинных бета-осцилляций в этих регионах не исключено).
➡️ Не использовать синусоиды как базисные функции для спектрального разложения (как это происходит в стандартном Фурье-анализе). Альтернативный вариант — преобразование Гильберта-Хуанга на основе метода EMD. Это преобразование основано на разложении сигнала на эмпирические моды, выделяемые непосредственно из данных. Как видно из моих модельных графиков (F), для нелинейного альфа-ритма это преобразование не выделяет пик в бете. Однако точность разложения зависит от специфики выделения мод, в т. ч. их количества. В представленном примере с разложением на две моды пик находится чуть ниже 10 Гц. Оставляю ссылку на пакет, в котором упомянутое разложение реализовано.
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/neural_cell/186
Create:
Last Update:

MEG/EEG Bloopers. Part 2
#neuroimaging

Продолжаю серию пасхалок из анализа сигналов мозга. Активность, регистрируемая с помощью МЭГ и ЭЭГ, представлена ритмическими осцилляциями. Один из стандартных способов оценить, насколько те или иные ритмы выражены, это вычисление спектральной плотности мощности. Характерный спектр МЭГ/ЭЭГ (см. рис. А), представлен несколькими диапазонами частот, наиболее мощный из которых соответствует альфа-ритму (8-12 Гц). Именно его рост мы наблюдаем при закрытии глаз.

Также во многие процессы вовлекается более высокочастотный бета-ритм (12-30 Гц): его связывают с сенсомоторными задачами, вниманием, рабочей памятью и т. д. И в анализе этого ритма может крыться подвох!

Дело в том, что бета может оказаться гармоникой, порождённой альфа-ритмом. Обратимся к примеру. Смоделировав простую синусоиду в альфа-диапазоне на 10 Гц, я получаю характерный пик в спектре на 10 Гц (С). Добавив к этой синусоиде нелинейную компоненту за счёт прибавления квадрата этой синусоиды с небольшим коэффициентом, на спектре можно заметить дополнительный гармонический пик на 20 Гц (D) — а это уже бета-ритм! Похожий пик можно получить и при моделировании синусоиды непосредственно в бета-диапазоне (E).

Вклад гармоник от альфы в оценку бета-ритма, увы, не умозрительный конструкт. Во-первых, каноничный сенсомоторный мю-ритм, который по частотному диапазону соответствует альфе, обладает не синусоидальной, а аркообразной формой. И очень часто ему сопутствуют гармоники в бете. Во-вторых, стандартная затылочная альфа тоже от этого не застрахована. На графике (B) представлен спектр ЭЭГ одного человека в состоянии закрытых глаз. Наряду с пиком в альфа-ритме наблюдается пик и в бете, зависящий от выраженности альфы. Анализ этого феномена более подробно представлен в этой статье (как и некоторые полезные эвристики).

Возникает вопрос — что с этим делать?
➡️ Не ограничивать себя анализом в частотном домене: существуют дополнительные способы оценки осцилляторной активности, в т. ч. и во временном домене с выделением отдельных всплесков осцилляций и оценкой их дополнительных характеристик.
➡️ При частотном анализе учитывать отношение высоких частот к низким, смотреть на поведение спектра в целом, не изолируя отдельные частотные диапазоны.
➡️ Внимательно оценивать центральные частоты в пиках спектра: если центральная частота одного из пиков кратна центральной частоте пика в более низких диапазонах, это повод задуматься о присутствии гармоник.
➡️ Учитывать пространственные характеристики осцилляций: бета-осцилляции с максимумом мощности в затылке — это подозрительно (хотя в редких случаях и присутствие истинных бета-осцилляций в этих регионах не исключено).
➡️ Не использовать синусоиды как базисные функции для спектрального разложения (как это происходит в стандартном Фурье-анализе). Альтернативный вариант — преобразование Гильберта-Хуанга на основе метода EMD. Это преобразование основано на разложении сигнала на эмпирические моды, выделяемые непосредственно из данных. Как видно из моих модельных графиков (F), для нелинейного альфа-ритма это преобразование не выделяет пик в бете. Однако точность разложения зависит от специфики выделения мод, в т. ч. их количества. В представленном примере с разложением на две моды пик находится чуть ниже 10 Гц. Оставляю ссылку на пакет, в котором упомянутое разложение реализовано.

BY the last neural cell




Share with your friend now:
group-telegram.com/neural_cell/186

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Now safely in France with his spouse and three of his children, Kliuchnikov scrolls through Telegram to learn about the devastation happening in his home country. Right now the digital security needs of Russians and Ukrainians are very different, and they lead to very different caveats about how to mitigate the risks associated with using Telegram. For Ukrainians in Ukraine, whose physical safety is at risk because they are in a war zone, digital security is probably not their highest priority. They may value access to news and communication with their loved ones over making sure that all of their communications are encrypted in such a manner that they are indecipherable to Telegram, its employees, or governments with court orders. Overall, extreme levels of fear in the market seems to have morphed into something more resembling concern. For example, the Cboe Volatility Index fell from its 2022 peak of 36, which it hit Monday, to around 30 on Friday, a sign of easing tensions. Meanwhile, while the price of WTI crude oil slipped from Sunday’s multiyear high $130 of barrel to $109 a pop. Markets have been expecting heavy restrictions on Russian oil, some of which the U.S. has already imposed, and that would reduce the global supply and bring about even more burdensome inflation. Anastasia Vlasova/Getty Images What distinguishes the app from competitors is its use of what's known as channels: Public or private feeds of photos and videos that can be set up by one person or an organization. The channels have become popular with on-the-ground journalists, aid workers and Ukrainian President Volodymyr Zelenskyy, who broadcasts on a Telegram channel. The channels can be followed by an unlimited number of people. Unlike Facebook, Twitter and other popular social networks, there is no advertising on Telegram and the flow of information is not driven by an algorithm.
from tw


Telegram the last neural cell
FROM American