Telegram Group & Telegram Channel
💊 Интенсивность имеет значение: как оценить эффект, если воздействие имеет разную силу?

Недавно мы обещали рассказать вам, как оценивать эффекты, если воздействие непрерывное -- пришло время этой темы!

Обычно для оценки влияния политик или другого воздействия используется метод разность разностей (Difference-in-Differences, DiD), но он работает хорошо, когда можно разделить наблюдаемые единицы на две группы: тех, кто подвергся воздействию, и тех, кто нет

В реальности же воздействие часто имеет не бинарную, а непрерывную природу — то есть разную интенсивность (dose):
🟤уровень загрязнения воздуха в регионах
🟤доля пациентов с ДМС в больнице
🟤количество символов в посте 😁 и т.д.

Во всех этих случаях вопрос звучит не "было ли воздействие?", а "насколько интенсивным оно было?"

🆕 Не скоро дело делается... Спустя 5 лет эти вопросы снова подняли в своём препринте известные исследователи DiD — Брэнтли Кэллоуэй (Университет Джорджии), Эндрю Гудман-Бейкон (Федеральный резервный банк Миннеаполиса) и Педро Сант'Анна (Университет Эмори) (Callaway et al., 2025)
Авторы переосмысливают классический DiD и показывают, что при непрерывном воздействии привычные методы могут давать некорректные оценки

В чём проблема?
Во многих прикладных работах исследователи используют стандартную модель с фиксированными эффектами (TWFE) и включают переменную интенсивности воздействия, умноженную на бинарную переменную пост-периода. Но такая оценка:
🟤не равна среднему причинному эффекту
🟤не отражает отклик на изменение интенсивности
🟤может быть смещенной из-за гетерогенных эффектов в разных группах и при разных интенсивностях
🟤складывается из эффектов при разных уровнях интенсивности с непрозрачными, иногда отрицательными весами

Авторы показывают, что даже в простой ситуации 2×2 DiD (две группы, два периода), коэффициент TWFE не имеет корректной причинной интерпретации, если интенсивность воздействия варьируется

Что и как нужно оценивать на самом деле?
Авторы вводят два типа причинных эффектов:
🟤Уровневый эффект (Level Effect) — показывает, как изменяется результат при переходе от нулевой интенсивности к заданной
🟤Причинный отклик (Causal Response) — описывает, как результат реагирует на небольшое изменение интенсивности. Это аналог производной или эластичности, но в причинном смысле

Что делать?
🟤Если вы хотите понять, что даёт воздействие при конкретной интенсивности — ищите уровневый эффект
🟤Если хотите знать, как результат реагирует на рост интенсивности — ищите причинный отклик
🟤Если нужно усреднённое значение по всей выборке — считайте агрегаты с корректными весами

Какие нужны предпосылки?
🟤Параллельные претренды (Parallel Trends) - предположение, что без воздействия все группы развивались бы одинаково
→ Позволяет идентифицировать уровневый эффект при заданной интенсивности
🟤Сильные параллельные претренды (Strong Parallel Trends) - предположение, что результат при одинаковой интенсивности развивался бы одинаково у всех групп
→ Необходимо для корректной оценки причинного отклика

Действительно разные результаты? Medicare и капиталоёмкость
🟤Дарон Аджемоглу и Эми Финкельштейн (Acemoglu, Finkelstein, 2008), используя TWFE показали, что после отмены трудовых субсидий по Medicare больницы стали больше инвестировать в капитал
🟤Авторы новой статьи применили свой подход к тем же данным — и получили иные результаты: уровень эффекта оказался на 50% выше, чем в TWFE; причинный отклик был положительным при низкой интенсивности, но негативным при высокой
🟤Это означает, что TWFE не просто занижал эффект, но и менял его знак при попытке оценить маржинальный отклик

🖥 Открытый пакет contdid
Авторы статьи разработали R-пакет contdid. Это пока альфа-версия, но она уже поддерживает непрерывное воздействие, ступенчатое воздействие (staggered adoption), агрегации по интенсивности и времени
🔗 Документация пакета: Github и RD Packages

Заинтересованным в теме предлагаем также заглянуть в препринт (Zhang, 2025), где автор пытается решить похожую задачу с помощью double/debiased machine learning

#канал_обозревает
#канал_рекомендует
@causal_channel
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6🔥41🤨1



group-telegram.com/artificial_stupid/495
Create:
Last Update:

💊 Интенсивность имеет значение: как оценить эффект, если воздействие имеет разную силу?

Недавно мы обещали рассказать вам, как оценивать эффекты, если воздействие непрерывное -- пришло время этой темы!

Обычно для оценки влияния политик или другого воздействия используется метод разность разностей (Difference-in-Differences, DiD), но он работает хорошо, когда можно разделить наблюдаемые единицы на две группы: тех, кто подвергся воздействию, и тех, кто нет

В реальности же воздействие часто имеет не бинарную, а непрерывную природу — то есть разную интенсивность (dose):
🟤уровень загрязнения воздуха в регионах
🟤доля пациентов с ДМС в больнице
🟤количество символов в посте 😁 и т.д.

Во всех этих случаях вопрос звучит не "было ли воздействие?", а "насколько интенсивным оно было?"

🆕 Не скоро дело делается... Спустя 5 лет эти вопросы снова подняли в своём препринте известные исследователи DiD — Брэнтли Кэллоуэй (Университет Джорджии), Эндрю Гудман-Бейкон (Федеральный резервный банк Миннеаполиса) и Педро Сант'Анна (Университет Эмори) (Callaway et al., 2025)
Авторы переосмысливают классический DiD и показывают, что при непрерывном воздействии привычные методы могут давать некорректные оценки

В чём проблема?
Во многих прикладных работах исследователи используют стандартную модель с фиксированными эффектами (TWFE) и включают переменную интенсивности воздействия, умноженную на бинарную переменную пост-периода. Но такая оценка:
🟤не равна среднему причинному эффекту
🟤не отражает отклик на изменение интенсивности
🟤может быть смещенной из-за гетерогенных эффектов в разных группах и при разных интенсивностях
🟤складывается из эффектов при разных уровнях интенсивности с непрозрачными, иногда отрицательными весами

Авторы показывают, что даже в простой ситуации 2×2 DiD (две группы, два периода), коэффициент TWFE не имеет корректной причинной интерпретации, если интенсивность воздействия варьируется

Что и как нужно оценивать на самом деле?
Авторы вводят два типа причинных эффектов:
🟤Уровневый эффект (Level Effect) — показывает, как изменяется результат при переходе от нулевой интенсивности к заданной
🟤Причинный отклик (Causal Response) — описывает, как результат реагирует на небольшое изменение интенсивности. Это аналог производной или эластичности, но в причинном смысле

Что делать?
🟤Если вы хотите понять, что даёт воздействие при конкретной интенсивности — ищите уровневый эффект
🟤Если хотите знать, как результат реагирует на рост интенсивности — ищите причинный отклик
🟤Если нужно усреднённое значение по всей выборке — считайте агрегаты с корректными весами

Какие нужны предпосылки?
🟤Параллельные претренды (Parallel Trends) - предположение, что без воздействия все группы развивались бы одинаково
→ Позволяет идентифицировать уровневый эффект при заданной интенсивности
🟤Сильные параллельные претренды (Strong Parallel Trends) - предположение, что результат при одинаковой интенсивности развивался бы одинаково у всех групп
→ Необходимо для корректной оценки причинного отклика

Действительно разные результаты? Medicare и капиталоёмкость
🟤Дарон Аджемоглу и Эми Финкельштейн (Acemoglu, Finkelstein, 2008), используя TWFE показали, что после отмены трудовых субсидий по Medicare больницы стали больше инвестировать в капитал
🟤Авторы новой статьи применили свой подход к тем же данным — и получили иные результаты: уровень эффекта оказался на 50% выше, чем в TWFE; причинный отклик был положительным при низкой интенсивности, но негативным при высокой
🟤Это означает, что TWFE не просто занижал эффект, но и менял его знак при попытке оценить маржинальный отклик

🖥 Открытый пакет contdid
Авторы статьи разработали R-пакет contdid. Это пока альфа-версия, но она уже поддерживает непрерывное воздействие, ступенчатое воздействие (staggered adoption), агрегации по интенсивности и времени
🔗 Документация пакета: Github и RD Packages

Заинтересованным в теме предлагаем также заглянуть в препринт (Zhang, 2025), где автор пытается решить похожую задачу с помощью double/debiased machine learning

#канал_обозревает
#канал_рекомендует
@causal_channel

BY Artificial stupidity




Share with your friend now:
group-telegram.com/artificial_stupid/495

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Friday’s performance was part of a larger shift. For the week, the Dow, S&P 500 and Nasdaq fell 2%, 2.9%, and 3.5%, respectively. Soloviev also promoted the channel in a post he shared on his own Telegram, which has 580,000 followers. The post recommended his viewers subscribe to "War on Fakes" in a time of fake news. At this point, however, Durov had already been working on Telegram with his brother, and further planned a mobile-first social network with an explicit focus on anti-censorship. Later in April, he told TechCrunch that he had left Russia and had “no plans to go back,” saying that the nation was currently “incompatible with internet business at the moment.” He added later that he was looking for a country that matched his libertarian ideals to base his next startup. This ability to mix the public and the private, as well as the ability to use bots to engage with users has proved to be problematic. In early 2021, a database selling phone numbers pulled from Facebook was selling numbers for $20 per lookup. Similarly, security researchers found a network of deepfake bots on the platform that were generating images of people submitted by users to create non-consensual imagery, some of which involved children. The picture was mixed overseas. Hong Kong’s Hang Seng Index fell 1.6%, under pressure from U.S. regulatory scrutiny on New York-listed Chinese companies. Stocks were more buoyant in Europe, where Frankfurt’s DAX surged 1.4%.
from ua


Telegram Artificial stupidity
FROM American