Telegram Group & Telegram Channel
Внезапно прошел уже месяц с AHA25. Можно, наконец, как честному слоупоку, поговорить про впечатления.

Программа оставила смешанные впечатления. Пропал блок по поведенческой экономике, появился блок по здоровью, чекапам и прочему. Очень много про AI / LLM, притом не с точки зрения продуктовой аналитики, а в продуктовых или маркетинговых задачах.

Из чисто аналитических инсайтов — и в кулуарах, и в докладах регулярно звучали реплики про “мы собираем 100500 метрик”. Конечно, какие-то метрики для ui, какие-то — по сегментам, но все равно. Сколько слышу, каждый раз поражает. Но одновременно задумался — может, и нам стоит больше метрик придумать/использовать?

Больше всего понравились два доклада. Тоже про метрики. Здесь можно посмотреть аннотации докладов.

Первый — “От cuped к mutlti-cuped: больше метрик — больше решений, или как мы превратили обилие метрик из штрафа в бонус»” (Григорий Засько, Лаборатория Прикладной Статистики, Т-Банк). Одна из идей доклада — использовать в тестах многомерные критерии, чтобы принимать решение не по изменению одной метрики, а по совокупности метрик. И “набор метрик как экосистемное изменение”. Вполне можно прикрутить к некоторым экспериментам в играх, мне кажется, так как у нас эксперименты нередко предполагают системное изменение поведения пользователя.

Второй интересный доклад — “Проксируй это: как использовать прокси-метрики умнее?” (Артем @gofat Ерохин, X5). Для меня это доклад про темы “подумать попозже” (особенно в части про causal inference), так как в моей работе прокси достаточно примитивные (воронка боев как прокси к ретеншену) и без какого-то глубокого осмысления и манипуляций. Зато вроде бы придумал, почему один из наших эксперментов оказался неудачен — кажется, мы напоролись на то, что называют законом Гудхарда — “Когда мера становится целью, она перестает быть хорошей мерой”. Мы пытались манипулировать прокси-метрикой, чтобы изменить целевую метрику и у нас (закономерно по Гудхарду) ничего не получилось. Скорее всего причины, почему именно не получилось у нас, лежат гораздо глуже. Но в первом приближении все равно неплохая интерпретация.

В общем, ходить на конференции полезно, в который раз убеждаюсь. Если даже не сами доклады, то некоторые решения в них или реплики в кулуарах наталкивают на новые идеи.



group-telegram.com/diceanalytics/172
Create:
Last Update:

Внезапно прошел уже месяц с AHA25. Можно, наконец, как честному слоупоку, поговорить про впечатления.

Программа оставила смешанные впечатления. Пропал блок по поведенческой экономике, появился блок по здоровью, чекапам и прочему. Очень много про AI / LLM, притом не с точки зрения продуктовой аналитики, а в продуктовых или маркетинговых задачах.

Из чисто аналитических инсайтов — и в кулуарах, и в докладах регулярно звучали реплики про “мы собираем 100500 метрик”. Конечно, какие-то метрики для ui, какие-то — по сегментам, но все равно. Сколько слышу, каждый раз поражает. Но одновременно задумался — может, и нам стоит больше метрик придумать/использовать?

Больше всего понравились два доклада. Тоже про метрики. Здесь можно посмотреть аннотации докладов.

Первый — “От cuped к mutlti-cuped: больше метрик — больше решений, или как мы превратили обилие метрик из штрафа в бонус»” (Григорий Засько, Лаборатория Прикладной Статистики, Т-Банк). Одна из идей доклада — использовать в тестах многомерные критерии, чтобы принимать решение не по изменению одной метрики, а по совокупности метрик. И “набор метрик как экосистемное изменение”. Вполне можно прикрутить к некоторым экспериментам в играх, мне кажется, так как у нас эксперименты нередко предполагают системное изменение поведения пользователя.

Второй интересный доклад — “Проксируй это: как использовать прокси-метрики умнее?” (Артем @gofat Ерохин, X5). Для меня это доклад про темы “подумать попозже” (особенно в части про causal inference), так как в моей работе прокси достаточно примитивные (воронка боев как прокси к ретеншену) и без какого-то глубокого осмысления и манипуляций. Зато вроде бы придумал, почему один из наших эксперментов оказался неудачен — кажется, мы напоролись на то, что называют законом Гудхарда — “Когда мера становится целью, она перестает быть хорошей мерой”. Мы пытались манипулировать прокси-метрикой, чтобы изменить целевую метрику и у нас (закономерно по Гудхарду) ничего не получилось. Скорее всего причины, почему именно не получилось у нас, лежат гораздо глуже. Но в первом приближении все равно неплохая интерпретация.

В общем, ходить на конференции полезно, в который раз убеждаюсь. Если даже не сами доклады, то некоторые решения в них или реплики в кулуарах наталкивают на новые идеи.

BY аналитика на кубах


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/diceanalytics/172

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Friday’s performance was part of a larger shift. For the week, the Dow, S&P 500 and Nasdaq fell 2%, 2.9%, and 3.5%, respectively. The regulator said it has been undertaking several campaigns to educate the investors to be vigilant while taking investment decisions based on stock tips. "The result is on this photo: fiery 'greetings' to the invaders," the Security Service of Ukraine wrote alongside a photo showing several military vehicles among plumes of black smoke. Telegram has become more interventionist over time, and has steadily increased its efforts to shut down these accounts. But this has also meant that the company has also engaged with lawmakers more generally, although it maintains that it doesn’t do so willingly. For instance, in September 2021, Telegram reportedly blocked a chat bot in support of (Putin critic) Alexei Navalny during Russia’s most recent parliamentary elections. Pavel Durov was quoted at the time saying that the company was obliged to follow a “legitimate” law of the land. He added that as Apple and Google both follow the law, to violate it would give both platforms a reason to boot the messenger from its stores. For example, WhatsApp restricted the number of times a user could forward something, and developed automated systems that detect and flag objectionable content.
from ua


Telegram аналитика на кубах
FROM American