Telegram Group & Telegram Channel
Quantization Marathon: Part I
Linear Quantization


#quantization

Разобравшись с основными пайплайнами параллелизма LLM, перейдем к не менее актуальной теме - квантизации. Очевидно, данное направление набирает популярность по мере роста размеров моделей📈

Я думаю многие уже слышали про новый курс про квантизацию от HuggingFace совместно с DeepLearning.AI. Я решил начать с него и, оказалось, что он совсем несложный, но тем не менее дает необходимую базу в понимании ключевых аспектов квантизации моделей

В курсе все внимание уделено разбору простейшего преобразования - Linear Quantization. Она применяется для перехода из одного типа данных в другой с помощью элементарных операций. Например, если мы хотим перевести числа из float32 в int8, то нам достаточно сопоставить границы областей значений данных и их центры. А далее, с помощью элементарных преобразований и операции округления, мы получаем биективное отображение, которое может работать в обе стороны.

Также в курсе вводится понятие гранулярности - когда референсные точки преобразования рассчитываются не для каждого отдельного значения, а для группы элементов в тензоре или сразу для всего тензора. Это упрощает вычисления и экономит память, однако снижает точность квантизации.

Помимо этих тем, показан лайфхак, как можно сжать значение с 8 бит до 2. Это подойдет для оптимизации хранения LLM. После квантизации, в 8 битных интовых ячейках памяти нередко содержится много нулей в начале каждой двоичной записи. Хранить их бессмысленно - они не несут никакой информации. Тогда давайте срежем у каждых четырех чисел первые 6 нулей, сократив каждое до 2 бит, а из них составим новое 8 битное значение. К сожалению, использовать на инференсе такую модель не получится - для этого необходимо провести обратную операцию распаковки всех значений.

Подробный разбор всего курса читайте в Teletype (время чтения 10 минут). А я буду готовить разбор новой статьи, про которую мало кто слышал, но она может иметь огромное влияние на всю индустрию LLM😇

Читать больше в Teletype 🔄
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/kitty_bytes/25
Create:
Last Update:

Quantization Marathon: Part I
Linear Quantization


#quantization

Разобравшись с основными пайплайнами параллелизма LLM, перейдем к не менее актуальной теме - квантизации. Очевидно, данное направление набирает популярность по мере роста размеров моделей📈

Я думаю многие уже слышали про новый курс про квантизацию от HuggingFace совместно с DeepLearning.AI. Я решил начать с него и, оказалось, что он совсем несложный, но тем не менее дает необходимую базу в понимании ключевых аспектов квантизации моделей

В курсе все внимание уделено разбору простейшего преобразования - Linear Quantization. Она применяется для перехода из одного типа данных в другой с помощью элементарных операций. Например, если мы хотим перевести числа из float32 в int8, то нам достаточно сопоставить границы областей значений данных и их центры. А далее, с помощью элементарных преобразований и операции округления, мы получаем биективное отображение, которое может работать в обе стороны.

Также в курсе вводится понятие гранулярности - когда референсные точки преобразования рассчитываются не для каждого отдельного значения, а для группы элементов в тензоре или сразу для всего тензора. Это упрощает вычисления и экономит память, однако снижает точность квантизации.

Помимо этих тем, показан лайфхак, как можно сжать значение с 8 бит до 2. Это подойдет для оптимизации хранения LLM. После квантизации, в 8 битных интовых ячейках памяти нередко содержится много нулей в начале каждой двоичной записи. Хранить их бессмысленно - они не несут никакой информации. Тогда давайте срежем у каждых четырех чисел первые 6 нулей, сократив каждое до 2 бит, а из них составим новое 8 битное значение. К сожалению, использовать на инференсе такую модель не получится - для этого необходимо провести обратную операцию распаковки всех значений.

Подробный разбор всего курса читайте в Teletype (время чтения 10 минут). А я буду готовить разбор новой статьи, про которую мало кто слышал, но она может иметь огромное влияние на всю индустрию LLM😇

Читать больше в Teletype 🔄

BY Kitty Bytes AI




Share with your friend now:
group-telegram.com/kitty_bytes/25

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Multiple pro-Kremlin media figures circulated the post's false claims, including prominent Russian journalist Vladimir Soloviev and the state-controlled Russian outlet RT, according to the DFR Lab's report. In addition, Telegram's architecture limits the ability to slow the spread of false information: the lack of a central public feed, and the fact that comments are easily disabled in channels, reduce the space for public pushback. The Securities and Exchange Board of India (Sebi) had carried out a similar exercise in 2017 in a matter related to circulation of messages through WhatsApp. "The argument from Telegram is, 'You should trust us because we tell you that we're trustworthy,'" Maréchal said. "It's really in the eye of the beholder whether that's something you want to buy into." After fleeing Russia, the brothers founded Telegram as a way to communicate outside the Kremlin's orbit. They now run it from Dubai, and Pavel Durov says it has more than 500 million monthly active users.
from ua


Telegram Kitty Bytes AI
FROM American