Telegram Group & Telegram Channel
📔 Мы внимательно следим за последними статьями в области ML, и сегодня хотим обратить ваше внимание на модель TabPFN v2 из статьи “Accurate predictions on small data with a tabular foundation model”, опубликованную в январе 2025 года в Nature. Модель работает на табличных данных, первая версия TabPFN была опубликована в октябре 2022, во второй версии помимо классификации появилась регрессия.

💡 Идея TabPFN v2:
В классических алгоритмах для решения suprevised задач на табличных данных модель обучается с нуля, в статье используется подход с предобучением:
1. Генерируются 130 миллионов синтетических датасетов с помощью каузальных графов, которые имитируют сложные зависимости в данных, пропуски, выбросы.
2. На сгенерированных данных предобучается трансформер, предсказывая таргет test выборки, получая на вход train как контекст. Для каждой ячейки таблицы используется отдельная репрезентация. Используется механизм внимания как по строкам, так и по столбцам таблицы.
3. Вместо привычных отдельных "fit" и "predict", трансформер за один проход получая и train, и test новой задачи одновременно, делает инференс на test, используя in-context learning. Простыми словами, модель обучена однажды, но подхватывает зависимости в данных из подаваемого в контекст датасета и сразу делает предсказания.

🥇 Результаты авторов:
1. Скорость и качество: в задачах классификации и регрессии на данных до 10к строк и 500 признаков за несколько секунд получает качество лучше, чем ансамбль из базовых алгоритмов (бустинги, лес, линейные), которые тюнились в течение нескольких часов.
2. Минимум работы: алгоритм не нужно тюнить, имеет отбор признаков, нативно работает с числовыми и категориальными признаками, а также с пропусками.
3. Плюсы foundation моделей: возможность получить распределение таргета, генерировать данные итд.
4. Неплохо показывает себя на временных рядах.

🤔 Выводы:
1. Статья показала эффективность foundation моделей в домене табличных данных, теперь у бустингов сильные конкуренты.
2. Пока есть вопросы с точки зрения эффективности инференса, ограниченности контекста, но дальше будут улучшения.
3. Интересно, что TabPFN v2 можно назвать AutoML решением, ведь для решения задачи он не требует ни настройки гиперпараметров, ни предобработки данных.

Тема интересная, у нас имеются наработки по этой теме, и мы работаем над их применением в LightAutoML🦙, stay tuned!

#обзор
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/lightautoml/182
Create:
Last Update:

📔 Мы внимательно следим за последними статьями в области ML, и сегодня хотим обратить ваше внимание на модель TabPFN v2 из статьи “Accurate predictions on small data with a tabular foundation model”, опубликованную в январе 2025 года в Nature. Модель работает на табличных данных, первая версия TabPFN была опубликована в октябре 2022, во второй версии помимо классификации появилась регрессия.

💡 Идея TabPFN v2:
В классических алгоритмах для решения suprevised задач на табличных данных модель обучается с нуля, в статье используется подход с предобучением:
1. Генерируются 130 миллионов синтетических датасетов с помощью каузальных графов, которые имитируют сложные зависимости в данных, пропуски, выбросы.
2. На сгенерированных данных предобучается трансформер, предсказывая таргет test выборки, получая на вход train как контекст. Для каждой ячейки таблицы используется отдельная репрезентация. Используется механизм внимания как по строкам, так и по столбцам таблицы.
3. Вместо привычных отдельных "fit" и "predict", трансформер за один проход получая и train, и test новой задачи одновременно, делает инференс на test, используя in-context learning. Простыми словами, модель обучена однажды, но подхватывает зависимости в данных из подаваемого в контекст датасета и сразу делает предсказания.

🥇 Результаты авторов:
1. Скорость и качество: в задачах классификации и регрессии на данных до 10к строк и 500 признаков за несколько секунд получает качество лучше, чем ансамбль из базовых алгоритмов (бустинги, лес, линейные), которые тюнились в течение нескольких часов.
2. Минимум работы: алгоритм не нужно тюнить, имеет отбор признаков, нативно работает с числовыми и категориальными признаками, а также с пропусками.
3. Плюсы foundation моделей: возможность получить распределение таргета, генерировать данные итд.
4. Неплохо показывает себя на временных рядах.

🤔 Выводы:
1. Статья показала эффективность foundation моделей в домене табличных данных, теперь у бустингов сильные конкуренты.
2. Пока есть вопросы с точки зрения эффективности инференса, ограниченности контекста, но дальше будут улучшения.
3. Интересно, что TabPFN v2 можно назвать AutoML решением, ведь для решения задачи он не требует ни настройки гиперпараметров, ни предобработки данных.

Тема интересная, у нас имеются наработки по этой теме, и мы работаем над их применением в LightAutoML🦙, stay tuned!

#обзор

BY LightAutoML framework




Share with your friend now:
group-telegram.com/lightautoml/182

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Unlike Silicon Valley giants such as Facebook and Twitter, which run very public anti-disinformation programs, Brooking said: "Telegram is famously lax or absent in its content moderation policy." Either way, Durov says that he withdrew his resignation but that he was ousted from his company anyway. Subsequently, control of the company was reportedly handed to oligarchs Alisher Usmanov and Igor Sechin, both allegedly close associates of Russian leader Vladimir Putin. False news often spreads via public groups, or chats, with potentially fatal effects. Asked about its stance on disinformation, Telegram spokesperson Remi Vaughn told AFP: "As noted by our CEO, the sheer volume of information being shared on channels makes it extremely difficult to verify, so it's important that users double-check what they read." Oleksandra Matviichuk, a Kyiv-based lawyer and head of the Center for Civil Liberties, called Durov’s position "very weak," and urged concrete improvements.
from ua


Telegram LightAutoML framework
FROM American