🤖 Почему модели лучше отвечают на вопросы по тексту, чем по изображениям — и как это исправить?
Vision-Language модели (VLMs) сильно хуже справляются с вопросами про картинки (*«Сколько книг на изображении?»*), чем с теми же вопросами по тексту (*«Сколько книг в описании?»*). И нашли способ улучшить результат на +4.6%, закрыв треть разрыва между модальностями! Вот что они сделали 👇
🔬 Они разделили вход на три части: • Данные (изображение или текст), • Вопрос (*how many…*), • Ответ (предсказание последнего слова).
🧠 Что нашли:
1️⃣Мозги у модели разные для текста и картинок — цепочки внимания и нейроны почти не совпадают (всего ~18%). Особенно в частях, где обрабатываются данные и вопрос.
2️⃣Часть, отвечающая за генерацию ответа, похожа — можно даже подменить её между модальностями, и модель почти не теряет в точности.
3️⃣Часть, которая "смотрит" на данные — строго модальная. Визуальный поток информации идёт по другому пути, и замена разрушает результат.
4️⃣Проблема в том, что изображение “становится понятным” слишком поздно. В поздних слоях визуальные данные уже похожи на текстовые — но модель не успевает этим воспользоваться.
💡 Решение: "перемотать" визуальные данные из поздних слоёв обратно в ранние (back-patching) — это помогает модели раньше "понять" картинку.
📈 Результат: +4.6% точности при ответах на вопросы по изображению — и треть разрыва с текстом закрыта!
🧩 Вывод: архитектура не виновата. Просто визуальные данные нужно правильно "подать" — и VLM начинает думать почти как человек.
🤖 Почему модели лучше отвечают на вопросы по тексту, чем по изображениям — и как это исправить?
Vision-Language модели (VLMs) сильно хуже справляются с вопросами про картинки (*«Сколько книг на изображении?»*), чем с теми же вопросами по тексту (*«Сколько книг в описании?»*). И нашли способ улучшить результат на +4.6%, закрыв треть разрыва между модальностями! Вот что они сделали 👇
🔬 Они разделили вход на три части: • Данные (изображение или текст), • Вопрос (*how many…*), • Ответ (предсказание последнего слова).
🧠 Что нашли:
1️⃣Мозги у модели разные для текста и картинок — цепочки внимания и нейроны почти не совпадают (всего ~18%). Особенно в частях, где обрабатываются данные и вопрос.
2️⃣Часть, отвечающая за генерацию ответа, похожа — можно даже подменить её между модальностями, и модель почти не теряет в точности.
3️⃣Часть, которая "смотрит" на данные — строго модальная. Визуальный поток информации идёт по другому пути, и замена разрушает результат.
4️⃣Проблема в том, что изображение “становится понятным” слишком поздно. В поздних слоях визуальные данные уже похожи на текстовые — но модель не успевает этим воспользоваться.
💡 Решение: "перемотать" визуальные данные из поздних слоёв обратно в ранние (back-patching) — это помогает модели раньше "понять" картинку.
📈 Результат: +4.6% точности при ответах на вопросы по изображению — и треть разрыва с текстом закрыта!
🧩 Вывод: архитектура не виновата. Просто визуальные данные нужно правильно "подать" — и VLM начинает думать почти как человек.
The gold standard of encryption, known as end-to-end encryption, where only the sender and person who receives the message are able to see it, is available on Telegram only when the Secret Chat function is enabled. Voice and video calls are also completely encrypted. Following this, Sebi, in an order passed in January 2022, established that the administrators of a Telegram channel having a large subscriber base enticed the subscribers to act upon recommendations that were circulated by those administrators on the channel, leading to significant price and volume impact in various scrips. On Telegram’s website, it says that Pavel Durov “supports Telegram financially and ideologically while Nikolai (Duvov)’s input is technological.” Currently, the Telegram team is based in Dubai, having moved around from Berlin, London and Singapore after departing Russia. Meanwhile, the company which owns Telegram is registered in the British Virgin Islands. As the war in Ukraine rages, the messaging app Telegram has emerged as the go-to place for unfiltered live war updates for both Ukrainian refugees and increasingly isolated Russians alike. In 2014, Pavel Durov fled the country after allies of the Kremlin took control of the social networking site most know just as VK. Russia's intelligence agency had asked Durov to turn over the data of anti-Kremlin protesters. Durov refused to do so.
from ua