Telegram Group & Telegram Channel
tasty-visial-bci-nov-2024.png
9 MB
tasty visual bci papers which i like in november of 2024
[2/3]

MonkeySee: decoding natural images straight from primate brain activity

tl;dr: CNN decoder reconstructs what a monkey sees from its brain signals in V1, V4, and IT areas.
• neural signals from 576 electrodes in V1/V4/IT areas record monkey's response to visual stimuli
• decoder architecture is essentially U-Net with additional learned Gaussian layer mapping electrode signals to 2D space
• model trained on 22,248 images from THINGS dataset achieves high correlation with ground truth
• results show hierarchical processing: V1 better at low-level features, IT at high-level semantics
link: https://openreview.net/forum?id=OWwdlxwnFN


Precise control of neural activity using dynamically optimized electrical stimulation

tl;dr: new optimization approach for neural implants that uses temporal and spatial separation for precise control of neural activity
• the array was placed on retinal ganglion cells (RGCs).
• developed greedy algorithm that selects optimal sequence of simple stimuli.
• uses temporal dithering and spatial multiplexing to avoid nonlinear electrode interactions
• improves visual stimulus reconstruction accuracy by 40% compared to existing methods
link: https://doi.org/10.7554/eLife.83424


my thoughts
The MonkeySee decoder effectively reconstructs images by mirroring how our brain processes information, from basic features in V1 to deeper meanings in IT. While not entirely novel, their experiments are well-designed, using multiple electrodes to cover various visual areas, which is impressive.
Conversely, the electrical stimulation projects are making significant strides, employing clever timing and placement strategies to enhance stimulation. They aim to reduce nonlinear responses by adjusting the timing of stimulation. Perhaps incorporating reinforcement learning could elevate this further?



group-telegram.com/neural_cell/218
Create:
Last Update:

tasty visual bci papers which i like in november of 2024
[2/3]

MonkeySee: decoding natural images straight from primate brain activity

tl;dr: CNN decoder reconstructs what a monkey sees from its brain signals in V1, V4, and IT areas.
• neural signals from 576 electrodes in V1/V4/IT areas record monkey's response to visual stimuli
• decoder architecture is essentially U-Net with additional learned Gaussian layer mapping electrode signals to 2D space
• model trained on 22,248 images from THINGS dataset achieves high correlation with ground truth
• results show hierarchical processing: V1 better at low-level features, IT at high-level semantics
link: https://openreview.net/forum?id=OWwdlxwnFN


Precise control of neural activity using dynamically optimized electrical stimulation

tl;dr: new optimization approach for neural implants that uses temporal and spatial separation for precise control of neural activity
• the array was placed on retinal ganglion cells (RGCs).
• developed greedy algorithm that selects optimal sequence of simple stimuli.
• uses temporal dithering and spatial multiplexing to avoid nonlinear electrode interactions
• improves visual stimulus reconstruction accuracy by 40% compared to existing methods
link: https://doi.org/10.7554/eLife.83424


my thoughts
The MonkeySee decoder effectively reconstructs images by mirroring how our brain processes information, from basic features in V1 to deeper meanings in IT. While not entirely novel, their experiments are well-designed, using multiple electrodes to cover various visual areas, which is impressive.
Conversely, the electrical stimulation projects are making significant strides, employing clever timing and placement strategies to enhance stimulation. They aim to reduce nonlinear responses by adjusting the timing of stimulation. Perhaps incorporating reinforcement learning could elevate this further?

BY the last neural cell


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/neural_cell/218

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

That hurt tech stocks. For the past few weeks, the 10-year yield has traded between 1.72% and 2%, as traders moved into the bond for safety when Russia headlines were ugly—and out of it when headlines improved. Now, the yield is touching its pandemic-era high. If the yield breaks above that level, that could signal that it’s on a sustainable path higher. Higher long-dated bond yields make future profits less valuable—and many tech companies are valued on the basis of profits forecast for many years in the future. Telegram has become more interventionist over time, and has steadily increased its efforts to shut down these accounts. But this has also meant that the company has also engaged with lawmakers more generally, although it maintains that it doesn’t do so willingly. For instance, in September 2021, Telegram reportedly blocked a chat bot in support of (Putin critic) Alexei Navalny during Russia’s most recent parliamentary elections. Pavel Durov was quoted at the time saying that the company was obliged to follow a “legitimate” law of the land. He added that as Apple and Google both follow the law, to violate it would give both platforms a reason to boot the messenger from its stores. But Telegram says people want to keep their chat history when they get a new phone, and they like having a data backup that will sync their chats across multiple devices. And that is why they let people choose whether they want their messages to be encrypted or not. When not turned on, though, chats are stored on Telegram's services, which are scattered throughout the world. But it has "disclosed 0 bytes of user data to third parties, including governments," Telegram states on its website. Right now the digital security needs of Russians and Ukrainians are very different, and they lead to very different caveats about how to mitigate the risks associated with using Telegram. For Ukrainians in Ukraine, whose physical safety is at risk because they are in a war zone, digital security is probably not their highest priority. They may value access to news and communication with their loved ones over making sure that all of their communications are encrypted in such a manner that they are indecipherable to Telegram, its employees, or governments with court orders. At this point, however, Durov had already been working on Telegram with his brother, and further planned a mobile-first social network with an explicit focus on anti-censorship. Later in April, he told TechCrunch that he had left Russia and had “no plans to go back,” saying that the nation was currently “incompatible with internet business at the moment.” He added later that he was looking for a country that matched his libertarian ideals to base his next startup.
from ua


Telegram the last neural cell
FROM American