Telegram Group & Telegram Channel
What does it mean to understand the brain function?
In search of neuroscience paradigms [part 0 - introduction]

A lot of papers are published daily on brain function on multiple levels. What I found interesting is that each study contains an implicit set of assumptions, which are part of a larger research program. Thus, different researchers mean different things when generating scientific insight.

This can lead to vastly different interpretations of the same experimental result. The biggest problem is in my opinion that these assumptions/paradigms are kept implicit and researchers are sometimes not even aware which theories they assume to be true while generating hypotheses and conducting experiments.

I will attempt to bridge this brain-science to "meta-science" gap in the next few posts, of course on the level of a beginner PhD student and from a perspective of a neuroscientist (within rather than above science) that seeks precision and awareness of scientific frameworks we all choose to work on.

Neuroscience is one of the fields with a unique position in this regard - as opposed to physics we really don't have a coherent picture unifying different scales where we established certain laws. We actually rarely have laws and theories that are universally accepted - this is the beauty of being in this field, but also a curse because hot debates are unavoidable.

So, in the next posts I will cover some of the old and emerging theories & frameworks about what it means to understand a biological neural network:

1. "Grandmother cells" & single-neuron frameworks
2. Cell-assemblies & Hebbian associations
3. Embodied & ecological cognition, naturalistic settings
4. Predictive coding & Bayesian brain
5. Feedforward processing & I/O relations, decoding
6. Dynamical systems & population codes
7. Connectomics & structural mapping
8. Computations in electric fields vs spiking
9. Cognitive modules vs distributed processing

What I won't cover for now but maybe will, is the philosophy of scientific insight (realism vs instrumentalism, functional vs mechanistic, reductionist vs holistic, explanation vs description). Also I won't touch AI computations for now, however might do in the future when it becomes more relevant to my research.

Hopefully, after this post series you will gain something valuable to apply to your work. Or you will learn about the existential troubles neuroscientists face, if you're just interested in the field 😉

Which topic would you like to read about first?

P.S. As for the extended read for those interested, here is the paper that stimulated my deeper exploration. Frankly I did not enjoy it too much but it definitely asked the right questions and forced me to try to prove the authors wrong.



group-telegram.com/neural_cell/277
Create:
Last Update:

What does it mean to understand the brain function?
In search of neuroscience paradigms [part 0 - introduction]

A lot of papers are published daily on brain function on multiple levels. What I found interesting is that each study contains an implicit set of assumptions, which are part of a larger research program. Thus, different researchers mean different things when generating scientific insight.

This can lead to vastly different interpretations of the same experimental result. The biggest problem is in my opinion that these assumptions/paradigms are kept implicit and researchers are sometimes not even aware which theories they assume to be true while generating hypotheses and conducting experiments.

I will attempt to bridge this brain-science to "meta-science" gap in the next few posts, of course on the level of a beginner PhD student and from a perspective of a neuroscientist (within rather than above science) that seeks precision and awareness of scientific frameworks we all choose to work on.

Neuroscience is one of the fields with a unique position in this regard - as opposed to physics we really don't have a coherent picture unifying different scales where we established certain laws. We actually rarely have laws and theories that are universally accepted - this is the beauty of being in this field, but also a curse because hot debates are unavoidable.

So, in the next posts I will cover some of the old and emerging theories & frameworks about what it means to understand a biological neural network:

1. "Grandmother cells" & single-neuron frameworks
2. Cell-assemblies & Hebbian associations
3. Embodied & ecological cognition, naturalistic settings
4. Predictive coding & Bayesian brain
5. Feedforward processing & I/O relations, decoding
6. Dynamical systems & population codes
7. Connectomics & structural mapping
8. Computations in electric fields vs spiking
9. Cognitive modules vs distributed processing

What I won't cover for now but maybe will, is the philosophy of scientific insight (realism vs instrumentalism, functional vs mechanistic, reductionist vs holistic, explanation vs description). Also I won't touch AI computations for now, however might do in the future when it becomes more relevant to my research.

Hopefully, after this post series you will gain something valuable to apply to your work. Or you will learn about the existential troubles neuroscientists face, if you're just interested in the field 😉

Which topic would you like to read about first?

P.S. As for the extended read for those interested, here is the paper that stimulated my deeper exploration. Frankly I did not enjoy it too much but it definitely asked the right questions and forced me to try to prove the authors wrong.

BY the last neural cell




Share with your friend now:
group-telegram.com/neural_cell/277

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

What distinguishes the app from competitors is its use of what's known as channels: Public or private feeds of photos and videos that can be set up by one person or an organization. The channels have become popular with on-the-ground journalists, aid workers and Ukrainian President Volodymyr Zelenskyy, who broadcasts on a Telegram channel. The channels can be followed by an unlimited number of people. Unlike Facebook, Twitter and other popular social networks, there is no advertising on Telegram and the flow of information is not driven by an algorithm. In 2014, Pavel Durov fled the country after allies of the Kremlin took control of the social networking site most know just as VK. Russia's intelligence agency had asked Durov to turn over the data of anti-Kremlin protesters. Durov refused to do so. The channel appears to be part of the broader information war that has developed following Russia's invasion of Ukraine. The Kremlin has paid Russian TikTok influencers to push propaganda, according to a Vice News investigation, while ProPublica found that fake Russian fact check videos had been viewed over a million times on Telegram. The perpetrators use various names to carry out the investment scams. They may also impersonate or clone licensed capital market intermediaries by using the names, logos, credentials, websites and other details of the legitimate entities to promote the illegal schemes. But because group chats and the channel features are not end-to-end encrypted, Galperin said user privacy is potentially under threat.
from ua


Telegram the last neural cell
FROM American