Telegram Group & Telegram Channel
Досталась мне на работе система, за которую до недавних пор отвечал умный, но неопытный PhD. Задача по сути сводится к text classification, внутри некий трансформер и все по классике: много кастомного, вычурный оптимайзер, дубликаты в данных и так далее. И, конечно, все надо улучшать - от точности до скорости.

В комплекте с системой полагался въедливый коллега, который с радостью согласился пойти разгребать авгиевы конюшни датасетов. А я взялся за инженерную часть. Кое-какая инфраструктура уже была: тесты, CI, обучение в докере - до этого мы с другим коллегой занимались переносом этого хозяйства из jupyter ноутбуков во что-то воспроизводимое. Так что надо можно было более или менее смело лезть в сам training pipeline.

Обучение занимало ~10-11 часов на одной A100, что в целом приемлемо, но, судя по низкой нагрузке и CPU, и GPU, можно было сделать лучше. Перенес часть препроцессинга из __getitem__ в __init__, избавился от pandas, выкинул лишние данные из памяти, что-то закэшировал, увеличил количество воркеров для датасетов, увеличил батчи - и GPU стала загружаться на ~95-98%, а обучение стало втрое быстрее. С такими скоростями уже можно быстро итерироваться.

Основная модель весила больше гигабайта. Я посмотрел на граф и обнаружил, что больше половины весов - это жирная мультиязычная embedding матрица инпута. Пошел в Athena и добыл неразмеченный датасет вида SELECT * FROM DATA WHERE THINGS ARE NOT LIKE FULL GARBAGE LIMIT OVERDOHOOYA, прогнал его через токенайзер, подтвердил гипотезу, что реально используется <50% токенов. Значит, можно переучить токенайзер и заменить эмбеддинг слой на значительно меньший, предварительно скопировав предобученные веса полезных токенов. Это уменьшает размер модели примерно до 60% от оригинального (правда, без заметного эффекта на скорости инференса). Потребление памяти важно для рантайма, ведь можно держать в памяти одного инстанса больше моделей, там как раз был боттлнек.

Кстати, раз у нас есть большой неразмеченный датасет, это звучит как повод устроить pretraining. Адаптировал masked language pretraining пайплайн с huggingface 🤗, и оставил новую, уже уменьшенную модель учиться на недельку. И, наконец, заменил дефолтные веса в основном пайплайне на результат претрейна на этом неразмеченном датасете. Это не только улучшило точность (на разных тестовых датасетах от 10% до 20%) и вторичные метрики вроде калибровки, но и ускорило сходимость, т.е. можно безболезненно уменьшить количество эпох еще на треть.

Итого: за пару недель работы обучение ускорено, потребление памяти упало, точность выросла. Важно подчеркнуть, что ничего из перечисленного не содержало никаких сложных алгоритмов. Если ты не OpenAI, то просто нормально делай - нормально будет.



group-telegram.com/partially_unsupervised/180
Create:
Last Update:

Досталась мне на работе система, за которую до недавних пор отвечал умный, но неопытный PhD. Задача по сути сводится к text classification, внутри некий трансформер и все по классике: много кастомного, вычурный оптимайзер, дубликаты в данных и так далее. И, конечно, все надо улучшать - от точности до скорости.

В комплекте с системой полагался въедливый коллега, который с радостью согласился пойти разгребать авгиевы конюшни датасетов. А я взялся за инженерную часть. Кое-какая инфраструктура уже была: тесты, CI, обучение в докере - до этого мы с другим коллегой занимались переносом этого хозяйства из jupyter ноутбуков во что-то воспроизводимое. Так что надо можно было более или менее смело лезть в сам training pipeline.

Обучение занимало ~10-11 часов на одной A100, что в целом приемлемо, но, судя по низкой нагрузке и CPU, и GPU, можно было сделать лучше. Перенес часть препроцессинга из __getitem__ в __init__, избавился от pandas, выкинул лишние данные из памяти, что-то закэшировал, увеличил количество воркеров для датасетов, увеличил батчи - и GPU стала загружаться на ~95-98%, а обучение стало втрое быстрее. С такими скоростями уже можно быстро итерироваться.

Основная модель весила больше гигабайта. Я посмотрел на граф и обнаружил, что больше половины весов - это жирная мультиязычная embedding матрица инпута. Пошел в Athena и добыл неразмеченный датасет вида SELECT * FROM DATA WHERE THINGS ARE NOT LIKE FULL GARBAGE LIMIT OVERDOHOOYA, прогнал его через токенайзер, подтвердил гипотезу, что реально используется <50% токенов. Значит, можно переучить токенайзер и заменить эмбеддинг слой на значительно меньший, предварительно скопировав предобученные веса полезных токенов. Это уменьшает размер модели примерно до 60% от оригинального (правда, без заметного эффекта на скорости инференса). Потребление памяти важно для рантайма, ведь можно держать в памяти одного инстанса больше моделей, там как раз был боттлнек.

Кстати, раз у нас есть большой неразмеченный датасет, это звучит как повод устроить pretraining. Адаптировал masked language pretraining пайплайн с huggingface 🤗, и оставил новую, уже уменьшенную модель учиться на недельку. И, наконец, заменил дефолтные веса в основном пайплайне на результат претрейна на этом неразмеченном датасете. Это не только улучшило точность (на разных тестовых датасетах от 10% до 20%) и вторичные метрики вроде калибровки, но и ускорило сходимость, т.е. можно безболезненно уменьшить количество эпох еще на треть.

Итого: за пару недель работы обучение ускорено, потребление памяти упало, точность выросла. Важно подчеркнуть, что ничего из перечисленного не содержало никаких сложных алгоритмов. Если ты не OpenAI, то просто нормально делай - нормально будет.

BY partially unsupervised


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/partially_unsupervised/180

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

So, uh, whenever I hear about Telegram, it’s always in relation to something bad. What gives? He floated the idea of restricting the use of Telegram in Ukraine and Russia, a suggestion that was met with fierce opposition from users. Shortly after, Durov backed off the idea. Two days after Russia invaded Ukraine, an account on the Telegram messaging platform posing as President Volodymyr Zelenskiy urged his armed forces to surrender. As a result, the pandemic saw many newcomers to Telegram, including prominent anti-vaccine activists who used the app's hands-off approach to share false information on shots, a study from the Institute for Strategic Dialogue shows. Just days after Russia invaded Ukraine, Durov wrote that Telegram was "increasingly becoming a source of unverified information," and he worried about the app being used to "incite ethnic hatred."
from ua


Telegram partially unsupervised
FROM American