Telegram Group & Telegram Channel
Дмитрий Савостьянов Вещает
Вы ничего не знаете про AI (NLP), если не читали эти 10 статей Выбил себе про-план в опенаи, теперь могу делать дип ресерч с кликбейтными заголовками. Потестил на NLP, звучит разумно. 1. Hochreiter & Schmidhuber (1997) – LSTM. Решает проблему исчезающего…
Вы ничего не знаете про AI (Computer Vision), если не читали эти 10 статей

Мне понравилась предыдущая подборка по NLP, поэтому сделал еще одну. Кажется могу теперь подаваться в SEO’шники.

1. Canny (1986) – A Computational Approach to Edge Detection. Формализовал критерии оптимального обнаружения границ, заложив основу для извлечения признаков в компьютерном зрении. (edge detection, feature extraction)

2. Lowe (2004) – SIFT: Scale-Invariant Feature Transform. Ввел SIFT – алгоритм для поиска ключевых точек, устойчивых к изменению масштаба и повороту. (feature detection, keypoints, matching)

3. LeCun et al. (1998) – LeNet-5. Показал, что сверточные нейросети (CNN) могут превосходить традиционные методы для распознавания изображений. (convolutional neural networks, deep learning)

4. Krizhevsky et al. (2012) – AlexNet. Сделал глубокие нейросети мейнстримом, победив в ImageNet 2012. Ввел ReLU, Dropout и массово использовал GPU. (deep learning, CNN, ImageNet)

5. He et al. (2015) – ResNet: Deep Residual Learning. Ввел остаточные связи, позволив тренировать сети 100+ слоев без проблем деградации градиента. (residual connections, deep networks, architecture design)

6. Redmon et al. (2016) – YOLO: You Only Look Once. Превратил детекцию объектов в единую задачу регрессии, сделав ее в разы быстрее. (real-time object detection, one-stage detectors)

7. Chen et al. (2020) – SimCLR: Self-Supervised Learning. Показал, что модели могут учиться без разметки. (self-supervised learning, contrastive learning, representation learning)

8. Dosovitskiy et al. (2020) – Vision Transformer (ViT). Доказал, что трансформеры работают в CV, исключив CNN блоки. (transformers, self-attention, image classification)

9. Radford et al. (2021) – CLIP: Learning from Images and Text. Соединил NLP и CV, обучив модель понимать изображения через текстовые описания. (vision-language models, multimodal AI, zero-shot learning)

10. Tan & Le (2019) – EfficientNet. Предложил эффективный способ масштабирования нейросетей, получив SOTA-результаты при меньших затратах. (efficient architectures, AutoML, model scaling)



group-telegram.com/savostyanov_dmitry/622
Create:
Last Update:

Вы ничего не знаете про AI (Computer Vision), если не читали эти 10 статей

Мне понравилась предыдущая подборка по NLP, поэтому сделал еще одну. Кажется могу теперь подаваться в SEO’шники.

1. Canny (1986) – A Computational Approach to Edge Detection. Формализовал критерии оптимального обнаружения границ, заложив основу для извлечения признаков в компьютерном зрении. (edge detection, feature extraction)

2. Lowe (2004) – SIFT: Scale-Invariant Feature Transform. Ввел SIFT – алгоритм для поиска ключевых точек, устойчивых к изменению масштаба и повороту. (feature detection, keypoints, matching)

3. LeCun et al. (1998) – LeNet-5. Показал, что сверточные нейросети (CNN) могут превосходить традиционные методы для распознавания изображений. (convolutional neural networks, deep learning)

4. Krizhevsky et al. (2012) – AlexNet. Сделал глубокие нейросети мейнстримом, победив в ImageNet 2012. Ввел ReLU, Dropout и массово использовал GPU. (deep learning, CNN, ImageNet)

5. He et al. (2015) – ResNet: Deep Residual Learning. Ввел остаточные связи, позволив тренировать сети 100+ слоев без проблем деградации градиента. (residual connections, deep networks, architecture design)

6. Redmon et al. (2016) – YOLO: You Only Look Once. Превратил детекцию объектов в единую задачу регрессии, сделав ее в разы быстрее. (real-time object detection, one-stage detectors)

7. Chen et al. (2020) – SimCLR: Self-Supervised Learning. Показал, что модели могут учиться без разметки. (self-supervised learning, contrastive learning, representation learning)

8. Dosovitskiy et al. (2020) – Vision Transformer (ViT). Доказал, что трансформеры работают в CV, исключив CNN блоки. (transformers, self-attention, image classification)

9. Radford et al. (2021) – CLIP: Learning from Images and Text. Соединил NLP и CV, обучив модель понимать изображения через текстовые описания. (vision-language models, multimodal AI, zero-shot learning)

10. Tan & Le (2019) – EfficientNet. Предложил эффективный способ масштабирования нейросетей, получив SOTA-результаты при меньших затратах. (efficient architectures, AutoML, model scaling)

BY Дмитрий Савостьянов Вещает


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/savostyanov_dmitry/622

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

However, the perpetrators of such frauds are now adopting new methods and technologies to defraud the investors. The news also helped traders look past another report showing decades-high inflation and shake off some of the volatility from recent sessions. The Bureau of Labor Statistics' February Consumer Price Index (CPI) this week showed another surge in prices even before Russia escalated its attacks in Ukraine. The headline CPI — soaring 7.9% over last year — underscored the sticky inflationary pressures reverberating across the U.S. economy, with everything from groceries to rents and airline fares getting more expensive for everyday consumers. Pavel Durov, Telegram's CEO, is known as "the Russian Mark Zuckerberg," for co-founding VKontakte, which is Russian for "in touch," a Facebook imitator that became the country's most popular social networking site. The regulator took order for the search and seizure operation from Judge Purushottam B Jadhav, Sebi Special Judge / Additional Sessions Judge. Since its launch in 2013, Telegram has grown from a simple messaging app to a broadcast network. Its user base isn’t as vast as WhatsApp’s, and its broadcast platform is a fraction the size of Twitter, but it’s nonetheless showing its use. While Telegram has been embroiled in controversy for much of its life, it has become a vital source of communication during the invasion of Ukraine. But, if all of this is new to you, let us explain, dear friends, what on Earth a Telegram is meant to be, and why you should, or should not, need to care.
from ua


Telegram Дмитрий Савостьянов Вещает
FROM American