Telegram Group & Telegram Channel
Таска с собеса в БКС Банк(DS)

Исходные данные:

Даны скрипты диалогов консультантов с клиентами

В ходе беседы консультант может:
🫴предложить приобрести продукт
🪙рассказать о выгоде нового продукта
📞назначить встречу для дальнейшего более детального обсуждения продукта
💱предупредить клиента об истечении срока действия продукта
🚀предложить перезвонить в более удобное время

Цель:
Разбить весь пул клиентов по уровню лояльности (high, low, average)

Вопросы к анализу:

🕶Нужно удалить выбросы
Какие критерии использовать для удаления некоторых диалогов?

Удалить пустые диалоги
(например, случаи, когда разговор был прерван),
а также те, в которых отсутствуют даты или названия финансовых продуктов
Исключить разговоры с ключевыми словами, указывающими на возможность повторного набора


🕶Придумайте подход для оценки У (это proxy переменная) экзогенным образом
Какие proxy переменные, на ваш взгляд, для этого подходят?

Можно использовать такие метрики, как ценность клиента на протяжении жизни (customer lifetime value),
коэффициент повторных покупок (churn rate), чистая прибыль, коэффициент выкупа, средняя сумма покупки


🕶С другой стороны, предположим, что лояльность У- это эндогенная переменная,
которая определяется набором признаков Х, значение которых определено в ходе диалога
Сформулируйте данный набор признаков, характеризующих лояльность,
а также значения, которые они принимают
(чем разнообразнее набор признаков, тем лучше)

Стоит обратить внимание на наличие в диалоге слов, которые указывают на лояльность или нелояльность пользователя
(бинарная переменная),
а также на определение тональности текста
и близость диалога к кластеру лояльных пользователей
(расстояние до центра кластера)
Также можно задавать маркетинговые вопросы напрямую


🕶Выберите форму зависимости и объясните ваш выбор
Опишите используемые метрики качества, а также использованные вами библиотеки, функции и методы анализа

Т.к. каждый диалог относится к определенному классу и разметки нет, это задача кластеризации
Для работы с текстовой кластеризацией подойдут методы word embedding из библиотеки
sklearn (CountVectorizer, TfidfTransformer) и gensim (word2vec), которые позволят преобразовать исходные данные в векторы для последующей кластеризации на нормализованных данных


🕶Определите границы значений рассчитанной величины лояльности У (если У изначально не категориальная переменная) для каждого уровня (high, low, average)
Устойчивы ли они?
Опиши способ подбора оптимальной границы

Y будет категориальной переменной, полученной в результате кластеризации, и важно, чтобы кластеры были максимально удалены друг от друга
Устойчивость кластеров можно оценить путем многократного применения алгоритма к данным: небольшие расхождения в результатах будут свидетельствовать о высокой устойчивости


🕶Опишите способ для упорядочивания выбранного вами набора признаков Х по степени важности для объяснения уровня лояльности У

Можно поочередно удалять признаки и отслеживать изменения в качестве классификации, что поможет выявить наиболее значимые из них

@zadachi_ds
Please open Telegram to view this post
VIEW IN TELEGRAM
14🔥3🐳3👍1



group-telegram.com/zadachi_ds/120
Create:
Last Update:

Таска с собеса в БКС Банк(DS)

Исходные данные:

Даны скрипты диалогов консультантов с клиентами

В ходе беседы консультант может:
🫴предложить приобрести продукт
🪙рассказать о выгоде нового продукта
📞назначить встречу для дальнейшего более детального обсуждения продукта
💱предупредить клиента об истечении срока действия продукта
🚀предложить перезвонить в более удобное время

Цель:
Разбить весь пул клиентов по уровню лояльности (high, low, average)

Вопросы к анализу:

🕶Нужно удалить выбросы
Какие критерии использовать для удаления некоторых диалогов?

Удалить пустые диалоги
(например, случаи, когда разговор был прерван),
а также те, в которых отсутствуют даты или названия финансовых продуктов
Исключить разговоры с ключевыми словами, указывающими на возможность повторного набора


🕶Придумайте подход для оценки У (это proxy переменная) экзогенным образом
Какие proxy переменные, на ваш взгляд, для этого подходят?

Можно использовать такие метрики, как ценность клиента на протяжении жизни (customer lifetime value),
коэффициент повторных покупок (churn rate), чистая прибыль, коэффициент выкупа, средняя сумма покупки


🕶С другой стороны, предположим, что лояльность У- это эндогенная переменная,
которая определяется набором признаков Х, значение которых определено в ходе диалога
Сформулируйте данный набор признаков, характеризующих лояльность,
а также значения, которые они принимают
(чем разнообразнее набор признаков, тем лучше)

Стоит обратить внимание на наличие в диалоге слов, которые указывают на лояльность или нелояльность пользователя
(бинарная переменная),
а также на определение тональности текста
и близость диалога к кластеру лояльных пользователей
(расстояние до центра кластера)
Также можно задавать маркетинговые вопросы напрямую


🕶Выберите форму зависимости и объясните ваш выбор
Опишите используемые метрики качества, а также использованные вами библиотеки, функции и методы анализа

Т.к. каждый диалог относится к определенному классу и разметки нет, это задача кластеризации
Для работы с текстовой кластеризацией подойдут методы word embedding из библиотеки
sklearn (CountVectorizer, TfidfTransformer) и gensim (word2vec), которые позволят преобразовать исходные данные в векторы для последующей кластеризации на нормализованных данных


🕶Определите границы значений рассчитанной величины лояльности У (если У изначально не категориальная переменная) для каждого уровня (high, low, average)
Устойчивы ли они?
Опиши способ подбора оптимальной границы

Y будет категориальной переменной, полученной в результате кластеризации, и важно, чтобы кластеры были максимально удалены друг от друга
Устойчивость кластеров можно оценить путем многократного применения алгоритма к данным: небольшие расхождения в результатах будут свидетельствовать о высокой устойчивости


🕶Опишите способ для упорядочивания выбранного вами набора признаков Х по степени важности для объяснения уровня лояльности У

Можно поочередно удалять признаки и отслеживать изменения в качестве классификации, что поможет выявить наиболее значимые из них

@zadachi_ds

BY Задачи DS - Собеседования, Соревнования, ШАД




Share with your friend now:
group-telegram.com/zadachi_ds/120

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The picture was mixed overseas. Hong Kong’s Hang Seng Index fell 1.6%, under pressure from U.S. regulatory scrutiny on New York-listed Chinese companies. Stocks were more buoyant in Europe, where Frankfurt’s DAX surged 1.4%. Telegram has gained a reputation as the “secure” communications app in the post-Soviet states, but whenever you make choices about your digital security, it’s important to start by asking yourself, “What exactly am I securing? And who am I securing it from?” These questions should inform your decisions about whether you are using the right tool or platform for your digital security needs. Telegram is certainly not the most secure messaging app on the market right now. Its security model requires users to place a great deal of trust in Telegram’s ability to protect user data. For some users, this may be good enough for now. For others, it may be wiser to move to a different platform for certain kinds of high-risk communications. Ukrainian forces have since put up a strong resistance to the Russian troops amid the war that has left hundreds of Ukrainian civilians, including children, dead, according to the United Nations. Ukrainian and international officials have accused Russia of targeting civilian populations with shelling and bombardments. Messages are not fully encrypted by default. That means the company could, in theory, access the content of the messages, or be forced to hand over the data at the request of a government. Official government accounts have also spread fake fact checks. An official Twitter account for the Russia diplomatic mission in Geneva shared a fake debunking video claiming without evidence that "Western and Ukrainian media are creating thousands of fake news on Russia every day." The video, which has amassed almost 30,000 views, offered a "how-to" spot misinformation.
from ua


Telegram Задачи DS - Собеседования, Соревнования, ШАД
FROM American