Telegram Group & Telegram Channel
Чтобы посчитать метрики, исследователи собирают небольшого агента, включающего в себя компоненты с памятью, размышлением и возможностью запускать bash-команды. В качестве движка этого агента используются Claude 3.5 Sonnet, Claude 3 Opus, Llama 3.1 405B Instruct, GPT-4o, Gemini 1.5 Pro, OpenAI o1-preview, Mixtral 8x22b Instruct и Llama 3 70B Chat. Скаффолдинг агента варьируют от чисто работы на вводах-выводах команд до добавления трекинга сессии в терминале, наличия рассуждений в истории и веб-поиска.

Среди моделей лучшей оказывается Claude 3.5 Sonnet, которой удается решить 17,5% задач без доступа к интернету и 20% с доступом. На втором месте оказалась gpt-4o с 17,5% в офлайне и 15% с интернетом. Наличие доступа к псевдотерминалу по сравнению с запуском bash-команд в stateless-режиме также повысило метрики Claude 3.5 Sonnet но уронило таковые для gpt-4o. В допматериалах указано, что gpt-4o никак не могла понять, что в конце команд необходимо добавлять перенос строки, в то время как Claude мог даже отправлять в терминал управляющие символы типа Ctlr-C. Мощная, казалось бы, o1-preview, показала себя хуже, чем не-reasoning-модели. При разбиении на подзадачи Claude 3.5 решает уже 27,5% задач, а в целом он же решает 51,1% подзадач. Выбранная авторами метрика – время для первой команды на решение – оказывается неплохим предсказателем сложности: ни одна система не смогла без подсказок даже с доступом в интернет решить задачу сложнее, чем те, которые заняли у людей больше 11 минут. Мне кажется не совсем честным по отношению к LLM то, что им давали только 15 итераций и от одной до трех попыток – нечестно ожидать от системы за такое количество попыток решить задачи, которые у людей заняли сутки.

Некоторые наблюдения из статьи бьются с моим личным опытом: o1 достаточно сложно заставить работать в многошаговых агентных сценариях – возможно, с o3 ситуация изменилась к лучшему, надо добраться. Кроме того, у моделей иногда встречаются интересные ограничения, которые сильно мешают в работе с терминалом и требуют подгонки промпта: например, Llama-3.1-405b в моем проекте на AISF с огромным трудом работала в терминале с файлами, в названиях которых были пробелы. В одном из сценариев она же, узнав, что в каталоге есть файл text-file.txt, пыталась открыть его как text_file.txt, каждый раз удивляясь в CoT, что у нее не получается, уходя в долгие попытки менять права доступа к несуществующему файлу. С другой стороны, история из приложений о том, как Claude, которому было неудобно работать с nc, нашел в интернете питоновский скрипт для работы с сокетами и стал использовать его, достаточно впечатляющая. Из забавного – только Claude местами отказывался от помощи по причинам безопасности, что характерно, но эта проблема обходилась изменениями в промпте.

В целом – еще одна интересная работа с большим количеством труда, вложенным в создание бенчмарка. К сожалению, у такого рода есть проблемы. Во-первых, оценки LLM смешиваются с оценками агента – вероятно, o1 мог показать себя гораздо лучше в другом скаффолдинге. Во-вторых, не совсем понятно, как реализован доступ к поиску – наверняка при реализациях уровня современных Deep Research агенты могли бы не только лучше изучить задачи, но и просто найти райтапы к этим задачам, особенно к тем, что в доступе с 2022 года. С этим же связана основная проблема работы – бенчмарк устаревает примерно тогда же, когда он оказывается на гитхабе, сколько ты не обмазывай его canary-токенами. Тем не менее, сама методология и выводы от этого менее важными не становятся.



group-telegram.com/llmsecurity/497
Create:
Last Update:

Чтобы посчитать метрики, исследователи собирают небольшого агента, включающего в себя компоненты с памятью, размышлением и возможностью запускать bash-команды. В качестве движка этого агента используются Claude 3.5 Sonnet, Claude 3 Opus, Llama 3.1 405B Instruct, GPT-4o, Gemini 1.5 Pro, OpenAI o1-preview, Mixtral 8x22b Instruct и Llama 3 70B Chat. Скаффолдинг агента варьируют от чисто работы на вводах-выводах команд до добавления трекинга сессии в терминале, наличия рассуждений в истории и веб-поиска.

Среди моделей лучшей оказывается Claude 3.5 Sonnet, которой удается решить 17,5% задач без доступа к интернету и 20% с доступом. На втором месте оказалась gpt-4o с 17,5% в офлайне и 15% с интернетом. Наличие доступа к псевдотерминалу по сравнению с запуском bash-команд в stateless-режиме также повысило метрики Claude 3.5 Sonnet но уронило таковые для gpt-4o. В допматериалах указано, что gpt-4o никак не могла понять, что в конце команд необходимо добавлять перенос строки, в то время как Claude мог даже отправлять в терминал управляющие символы типа Ctlr-C. Мощная, казалось бы, o1-preview, показала себя хуже, чем не-reasoning-модели. При разбиении на подзадачи Claude 3.5 решает уже 27,5% задач, а в целом он же решает 51,1% подзадач. Выбранная авторами метрика – время для первой команды на решение – оказывается неплохим предсказателем сложности: ни одна система не смогла без подсказок даже с доступом в интернет решить задачу сложнее, чем те, которые заняли у людей больше 11 минут. Мне кажется не совсем честным по отношению к LLM то, что им давали только 15 итераций и от одной до трех попыток – нечестно ожидать от системы за такое количество попыток решить задачи, которые у людей заняли сутки.

Некоторые наблюдения из статьи бьются с моим личным опытом: o1 достаточно сложно заставить работать в многошаговых агентных сценариях – возможно, с o3 ситуация изменилась к лучшему, надо добраться. Кроме того, у моделей иногда встречаются интересные ограничения, которые сильно мешают в работе с терминалом и требуют подгонки промпта: например, Llama-3.1-405b в моем проекте на AISF с огромным трудом работала в терминале с файлами, в названиях которых были пробелы. В одном из сценариев она же, узнав, что в каталоге есть файл text-file.txt, пыталась открыть его как text_file.txt, каждый раз удивляясь в CoT, что у нее не получается, уходя в долгие попытки менять права доступа к несуществующему файлу. С другой стороны, история из приложений о том, как Claude, которому было неудобно работать с nc, нашел в интернете питоновский скрипт для работы с сокетами и стал использовать его, достаточно впечатляющая. Из забавного – только Claude местами отказывался от помощи по причинам безопасности, что характерно, но эта проблема обходилась изменениями в промпте.

В целом – еще одна интересная работа с большим количеством труда, вложенным в создание бенчмарка. К сожалению, у такого рода есть проблемы. Во-первых, оценки LLM смешиваются с оценками агента – вероятно, o1 мог показать себя гораздо лучше в другом скаффолдинге. Во-вторых, не совсем понятно, как реализован доступ к поиску – наверняка при реализациях уровня современных Deep Research агенты могли бы не только лучше изучить задачи, но и просто найти райтапы к этим задачам, особенно к тем, что в доступе с 2022 года. С этим же связана основная проблема работы – бенчмарк устаревает примерно тогда же, когда он оказывается на гитхабе, сколько ты не обмазывай его canary-токенами. Тем не менее, сама методология и выводы от этого менее важными не становятся.

BY llm security и каланы







Share with your friend now:
group-telegram.com/llmsecurity/497

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Ukrainian President Volodymyr Zelensky said in a video message on Tuesday that Ukrainian forces "destroy the invaders wherever we can." In addition, Telegram now supports the use of third-party streaming tools like OBS Studio and XSplit to broadcast live video, allowing users to add overlays and multi-screen layouts for a more professional look. "For Telegram, accountability has always been a problem, which is why it was so popular even before the full-scale war with far-right extremists and terrorists from all over the world," she told AFP from her safe house outside the Ukrainian capital. The Russian invasion of Ukraine has been a driving force in markets for the past few weeks. One thing that Telegram now offers to all users is the ability to “disappear” messages or set remote deletion deadlines. That enables users to have much more control over how long people can access what you’re sending them. Given that Russian law enforcement officials are reportedly (via Insider) stopping people in the street and demanding to read their text messages, this could be vital to protect individuals from reprisals.
from us


Telegram llm security и каланы
FROM American