Telegram Group & Telegram Channel
📘 Learning Deep Representations of Data Distributions — новая бесплатная книга от исследователей UC Berkeley (Sam Buchanan, Druv Pai, Peng Wang, Yi Ma).

Главная идея книги - показать, почему и как глубокие нейросети учатся извлекать сжатые, информативные представления сложных данных, и что у них внутри:

💡В книге вы найдите:

🟠простое объяснение фундаментальных принципов архитектур нейросетей через оптимизацию и теорию информации.
🟠как модели формируют инвариантные и устойчивые представления
🟠связь с PCA, автоэнкодерами и дифференцируемыми отображениями — то есть, как нейросети по сути обобщают классические методы сжатия данных и учатся находить их оптимальное представление
🟠взгляд на обучение через энергию, энтропию и структуру данных
🟠свежие идеи для понимания LLM и генеративных моделей

📖 Читать онлайн: ma-lab-berkeley.github.io/deep-representation-learning-book

🖥 Github: https://github.com/Ma-Lab-Berkeley/deep-representation-learning-book

@ai_machinelearning_big_data

#book #deeplearning #representationlearning #ucberkeley #machinelearning
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
4👍3



group-telegram.com/machinelearning_books/1200
Create:
Last Update:

📘 Learning Deep Representations of Data Distributions — новая бесплатная книга от исследователей UC Berkeley (Sam Buchanan, Druv Pai, Peng Wang, Yi Ma).

Главная идея книги - показать, почему и как глубокие нейросети учатся извлекать сжатые, информативные представления сложных данных, и что у них внутри:

💡В книге вы найдите:

🟠простое объяснение фундаментальных принципов архитектур нейросетей через оптимизацию и теорию информации.
🟠как модели формируют инвариантные и устойчивые представления
🟠связь с PCA, автоэнкодерами и дифференцируемыми отображениями — то есть, как нейросети по сути обобщают классические методы сжатия данных и учатся находить их оптимальное представление
🟠взгляд на обучение через энергию, энтропию и структуру данных
🟠свежие идеи для понимания LLM и генеративных моделей

📖 Читать онлайн: ma-lab-berkeley.github.io/deep-representation-learning-book

🖥 Github: https://github.com/Ma-Lab-Berkeley/deep-representation-learning-book

@ai_machinelearning_big_data

#book #deeplearning #representationlearning #ucberkeley #machinelearning

BY Машиннное обучение | Наука о данных Библиотека










Share with your friend now:
group-telegram.com/machinelearning_books/1200

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

For tech stocks, “the main thing is yields,” Essaye said. In this regard, Sebi collaborated with the Telecom Regulatory Authority of India (TRAI) to reduce the vulnerability of the securities market to manipulation through misuse of mass communication medium like bulk SMS. In a message on his Telegram channel recently recounting the episode, Durov wrote: "I lost my company and my home, but would do it again – without hesitation." On Feb. 27, however, he admitted from his Russian-language account that "Telegram channels are increasingly becoming a source of unverified information related to Ukrainian events." Lastly, the web previews of t.me links have been given a new look, adding chat backgrounds and design elements from the fully-features Telegram Web client.
from us


Telegram Машиннное обучение | Наука о данных Библиотека
FROM American