Telegram Group & Telegram Channel
tasty-visial-bci-nov-2024.png
9 MB
tasty visual bci papers which i like in november of 2024
[2/3]

MonkeySee: decoding natural images straight from primate brain activity

tl;dr: CNN decoder reconstructs what a monkey sees from its brain signals in V1, V4, and IT areas.
• neural signals from 576 electrodes in V1/V4/IT areas record monkey's response to visual stimuli
• decoder architecture is essentially U-Net with additional learned Gaussian layer mapping electrode signals to 2D space
• model trained on 22,248 images from THINGS dataset achieves high correlation with ground truth
• results show hierarchical processing: V1 better at low-level features, IT at high-level semantics
link: https://openreview.net/forum?id=OWwdlxwnFN


Precise control of neural activity using dynamically optimized electrical stimulation

tl;dr: new optimization approach for neural implants that uses temporal and spatial separation for precise control of neural activity
• the array was placed on retinal ganglion cells (RGCs).
• developed greedy algorithm that selects optimal sequence of simple stimuli.
• uses temporal dithering and spatial multiplexing to avoid nonlinear electrode interactions
• improves visual stimulus reconstruction accuracy by 40% compared to existing methods
link: https://doi.org/10.7554/eLife.83424


my thoughts
The MonkeySee decoder effectively reconstructs images by mirroring how our brain processes information, from basic features in V1 to deeper meanings in IT. While not entirely novel, their experiments are well-designed, using multiple electrodes to cover various visual areas, which is impressive.
Conversely, the electrical stimulation projects are making significant strides, employing clever timing and placement strategies to enhance stimulation. They aim to reduce nonlinear responses by adjusting the timing of stimulation. Perhaps incorporating reinforcement learning could elevate this further?



group-telegram.com/neural_cell/218
Create:
Last Update:

tasty visual bci papers which i like in november of 2024
[2/3]

MonkeySee: decoding natural images straight from primate brain activity

tl;dr: CNN decoder reconstructs what a monkey sees from its brain signals in V1, V4, and IT areas.
• neural signals from 576 electrodes in V1/V4/IT areas record monkey's response to visual stimuli
• decoder architecture is essentially U-Net with additional learned Gaussian layer mapping electrode signals to 2D space
• model trained on 22,248 images from THINGS dataset achieves high correlation with ground truth
• results show hierarchical processing: V1 better at low-level features, IT at high-level semantics
link: https://openreview.net/forum?id=OWwdlxwnFN


Precise control of neural activity using dynamically optimized electrical stimulation

tl;dr: new optimization approach for neural implants that uses temporal and spatial separation for precise control of neural activity
• the array was placed on retinal ganglion cells (RGCs).
• developed greedy algorithm that selects optimal sequence of simple stimuli.
• uses temporal dithering and spatial multiplexing to avoid nonlinear electrode interactions
• improves visual stimulus reconstruction accuracy by 40% compared to existing methods
link: https://doi.org/10.7554/eLife.83424


my thoughts
The MonkeySee decoder effectively reconstructs images by mirroring how our brain processes information, from basic features in V1 to deeper meanings in IT. While not entirely novel, their experiments are well-designed, using multiple electrodes to cover various visual areas, which is impressive.
Conversely, the electrical stimulation projects are making significant strides, employing clever timing and placement strategies to enhance stimulation. They aim to reduce nonlinear responses by adjusting the timing of stimulation. Perhaps incorporating reinforcement learning could elevate this further?

BY the last neural cell


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/neural_cell/218

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

As a result, the pandemic saw many newcomers to Telegram, including prominent anti-vaccine activists who used the app's hands-off approach to share false information on shots, a study from the Institute for Strategic Dialogue shows. The War on Fakes channel has repeatedly attempted to push conspiracies that footage from Ukraine is somehow being falsified. One post on the channel from February 24 claimed without evidence that a widely viewed photo of a Ukrainian woman injured in an airstrike in the city of Chuhuiv was doctored and that the woman was seen in a different photo days later without injuries. The post, which has over 600,000 views, also baselessly claimed that the woman's blood was actually makeup or grape juice. "For Telegram, accountability has always been a problem, which is why it was so popular even before the full-scale war with far-right extremists and terrorists from all over the world," she told AFP from her safe house outside the Ukrainian capital. He said that since his platform does not have the capacity to check all channels, it may restrict some in Russia and Ukraine "for the duration of the conflict," but then reversed course hours later after many users complained that Telegram was an important source of information. Friday’s performance was part of a larger shift. For the week, the Dow, S&P 500 and Nasdaq fell 2%, 2.9%, and 3.5%, respectively.
from us


Telegram the last neural cell
FROM American