Notice: file_put_contents(): Write of 10705 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50

Warning: file_put_contents(): Only 12288 of 22993 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50
Поступашки - ШАД, Стажировки и Магистратура | Telegram Webview: postypashki_old/738 -
Telegram Group & Telegram Channel
#How_to_заботать

How to заботать дискретную математику?

Важнейшая дисциплина, без которой невозможно поступить в ШАД, в магистратуру, сдать ГОС, написать олимпиаду. Да и без нее невозможно просто чувствовать себя уверенно в программировании, DS, ведь там постоянно применяются понятия и скромные навыки, приобретенные в курсе дискретной математике. Да и частенько, помимо алгосов, ее спрашивают на собесах: в тестовом задании или на интервью, особенно в зарубежных офисах Европы и США.
Как всегда все книжки в комментариях, там же делимся своими любимыми материалами и опытом по боту дискретки😎😎

1) Комбинаторика
Как нестранно, у большинства с этим по началу проблемы, ибо обычно рассказывают общий случай, выражая его формулами, а потом пытаются подогнать условие новой задачи под эти формулы. Такой подход просто ужасен!! Вместо того, чтобы решать задачу, студент просто думает: здесь размещение с повторением или нет— угадай мелодию. Чтобы не попасть под этот конвейер дебилов, стоит просто рассмотреть, как можно больше живых примеров, стараться выводить каждую конструкцию с нуля, а не заучивать формулы, особенно это важно начинающим, ибо основная сложность комбинаторной задачи— формализовать, понять какое перед нами множество, как говорят в теории вероятностей: найти пространство исходов.
В этом поможет классика: "Ленинградские математические кружки" (главы Комбинаторика-1 и Комбинаторика-2), где куча прикольных примеров и задач. Особенно обратите внимание на раздел "Шары и Перегородки", который очень часто встречается в прикладных задачах и который очень любят спрашивать, особенно на собесах в ШАДы.
Если тяжеловато идет, то можно начать с "Комбинаторики" Виленкина, где куча-куча и куча-куча примеров, задач, написано все подробно и понятно. Единственное большой объем, но при этом есть даже главы про производящие функции и задачи из орбиты.
Также любопытные задачи можно встретить и в "Первой научной" подборке от Михаила Абрамовича.
Отмечу также важность комбинаторики: без нее, например, не сможете решать задачи на дискретную вероятность или не сможете даже посчитать сложность многих алгоритмов.
2) Множества
Что множества можно представлять как кружочки знают еще с детского сада, но вот на формулу включений/исключений есть и нормальные задачи, да и любят спросить на олимпиадах явно или неявно, например, в суммировании вероятностей и мат ожидания. Чтобы не попасть в просак смотрим первую главу Виленкина.
3) Текстовые задачи, Индукция, Принцип Дирихле, Игры...
Просто смотрим все темы текстовых задач в "Ленинградских кружках". Все это необходимая база и есть в каждом вступительном, да и опять же просто на собесах. По остальным разделам тоже советую пробежаться, ибо они важные элементы математической культуры. Теории и задач оттуда хватит на маги и собесы с лихвой, особенно хорошо задачи гуглятся на problems.ru. Для тестов и интервью на собесах подойдет порешать последнюю текстовую задачу из ЕГЭ (это не шутка), например, тесты в Тинек так и составляются. В ШАДах же любят давать эти идеи на сюжетах из других дисциплин: линейной алгебры или мат анализа. Если уже успели разобраться с ними, то проблем не возникнет.
4) Графы
Для начала берем "Ленинградские кружки" разбирает разделы "Графы - 1" и "Графы - 2". Теории там совсем мало, просто знакомитесь с основными определениями и общими приемами. Для хайповых магистратур этого вполне хватит.
Для ШАДов далее можно взять Гашкова "Дискретная математика", где много примеров и прикладных задач, да и в принципе он покрывает весь курс дискретки в ВУЗе. Потом "Теорию Графов" Омельченко и "Материалы Московской сборной" главу 12, чтобы посмотреть на теорию Рамсея, случайные графы. Если хотите прямо сильную прокачку по теории, то можете взять "Теорию Графов" Уилсон (книга достойная + очень много задач и упражнений).
🔥39👍138🥰1



group-telegram.com/postypashki_old/738
Create:
Last Update:

#How_to_заботать

How to заботать дискретную математику?

Важнейшая дисциплина, без которой невозможно поступить в ШАД, в магистратуру, сдать ГОС, написать олимпиаду. Да и без нее невозможно просто чувствовать себя уверенно в программировании, DS, ведь там постоянно применяются понятия и скромные навыки, приобретенные в курсе дискретной математике. Да и частенько, помимо алгосов, ее спрашивают на собесах: в тестовом задании или на интервью, особенно в зарубежных офисах Европы и США.
Как всегда все книжки в комментариях, там же делимся своими любимыми материалами и опытом по боту дискретки😎😎

1) Комбинаторика
Как нестранно, у большинства с этим по началу проблемы, ибо обычно рассказывают общий случай, выражая его формулами, а потом пытаются подогнать условие новой задачи под эти формулы. Такой подход просто ужасен!! Вместо того, чтобы решать задачу, студент просто думает: здесь размещение с повторением или нет— угадай мелодию. Чтобы не попасть под этот конвейер дебилов, стоит просто рассмотреть, как можно больше живых примеров, стараться выводить каждую конструкцию с нуля, а не заучивать формулы, особенно это важно начинающим, ибо основная сложность комбинаторной задачи— формализовать, понять какое перед нами множество, как говорят в теории вероятностей: найти пространство исходов.
В этом поможет классика: "Ленинградские математические кружки" (главы Комбинаторика-1 и Комбинаторика-2), где куча прикольных примеров и задач. Особенно обратите внимание на раздел "Шары и Перегородки", который очень часто встречается в прикладных задачах и который очень любят спрашивать, особенно на собесах в ШАДы.
Если тяжеловато идет, то можно начать с "Комбинаторики" Виленкина, где куча-куча и куча-куча примеров, задач, написано все подробно и понятно. Единственное большой объем, но при этом есть даже главы про производящие функции и задачи из орбиты.
Также любопытные задачи можно встретить и в "Первой научной" подборке от Михаила Абрамовича.
Отмечу также важность комбинаторики: без нее, например, не сможете решать задачи на дискретную вероятность или не сможете даже посчитать сложность многих алгоритмов.
2) Множества
Что множества можно представлять как кружочки знают еще с детского сада, но вот на формулу включений/исключений есть и нормальные задачи, да и любят спросить на олимпиадах явно или неявно, например, в суммировании вероятностей и мат ожидания. Чтобы не попасть в просак смотрим первую главу Виленкина.
3) Текстовые задачи, Индукция, Принцип Дирихле, Игры...
Просто смотрим все темы текстовых задач в "Ленинградских кружках". Все это необходимая база и есть в каждом вступительном, да и опять же просто на собесах. По остальным разделам тоже советую пробежаться, ибо они важные элементы математической культуры. Теории и задач оттуда хватит на маги и собесы с лихвой, особенно хорошо задачи гуглятся на problems.ru. Для тестов и интервью на собесах подойдет порешать последнюю текстовую задачу из ЕГЭ (это не шутка), например, тесты в Тинек так и составляются. В ШАДах же любят давать эти идеи на сюжетах из других дисциплин: линейной алгебры или мат анализа. Если уже успели разобраться с ними, то проблем не возникнет.
4) Графы
Для начала берем "Ленинградские кружки" разбирает разделы "Графы - 1" и "Графы - 2". Теории там совсем мало, просто знакомитесь с основными определениями и общими приемами. Для хайповых магистратур этого вполне хватит.
Для ШАДов далее можно взять Гашкова "Дискретная математика", где много примеров и прикладных задач, да и в принципе он покрывает весь курс дискретки в ВУЗе. Потом "Теорию Графов" Омельченко и "Материалы Московской сборной" главу 12, чтобы посмотреть на теорию Рамсея, случайные графы. Если хотите прямо сильную прокачку по теории, то можете взять "Теорию Графов" Уилсон (книга достойная + очень много задач и упражнений).

BY Поступашки - ШАД, Стажировки и Магистратура


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/postypashki_old/738

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Apparently upbeat developments in Russia's discussions with Ukraine helped at least temporarily send investors back into risk assets. Russian President Vladimir Putin said during a meeting with his Belarusian counterpart Alexander Lukashenko that there were "certain positive developments" occurring in the talks with Ukraine, according to a transcript of their meeting. Putin added that discussions were happening "almost on a daily basis." Telegram, which does little policing of its content, has also became a hub for Russian propaganda and misinformation. Many pro-Kremlin channels have become popular, alongside accounts of journalists and other independent observers. Anastasia Vlasova/Getty Images "The argument from Telegram is, 'You should trust us because we tell you that we're trustworthy,'" Maréchal said. "It's really in the eye of the beholder whether that's something you want to buy into." Markets continued to grapple with the economic and corporate earnings implications relating to the Russia-Ukraine conflict. “We have a ton of uncertainty right now,” said Stephanie Link, chief investment strategist and portfolio manager at Hightower Advisors. “We’re dealing with a war, we’re dealing with inflation. We don’t know what it means to earnings.”
from us


Telegram Поступашки - ШАД, Стажировки и Магистратура
FROM American