Telegram Group & Telegram Channel
Автоматизация научных обзоров с помощью больших языковых моделей: систематический обзор

Большие языковые модели (LLM) недавно стали одним из самых мощных инструментов обработки естественного языка (NLP) для решения различных задач. В этом систематическом обзоре мы стремились оценить естественное расширение использования LLM для управления и направления процесса обзора.

Методы

Исследование проводилось в июне 2024 года в базах данных PubMed, Scopus, Dimensions и Google Scholar. В обзор были включены только англоязычные публикации, посвященные использованию LLM для автоматизации различных этапов систематического обзора.

Скрининг и извлечение данных проводились в Covidence с помощью разработанного командой плагина LLM для Covidence. Этот плагин использует модель OpenAI gpt-4o и автоматизирует действия в Covidence, такие как нажатие кнопок «Включить/Исключить» или оставление заметок.

Результаты

В общей сложности было найдено 3788 статей, из которых 172 были признаны подходящими для окончательного обзора. ChatGPT и LLM на основе GPT стали наиболее распространенной архитектурой для автоматизации обзора (n=126, 73,2%). Значительное количество проектов по автоматизации обзора было найдено, но лишь ограниченное число статей (n=26, 15,1%) представляли собой фактические обзоры, в которых LLM использовались при их создании.

Большинство статей были сосредоточены на автоматизации определенного этапа обзора, например, на поиске публикаций (n=60, 34,9%) и извлечении данных (n=54, 31,4%). При сравнении совокупной производительности моделей на основе GPT и BERT первые показали лучшие результаты в извлечении данных со средней точностью 83,0% (SD=10,4) и полнотой 86,0% (SD=9,8), в то время как вторые были немного менее точными на этапе скрининга заголовков и рефератов (Maccuracy=77,3%, SD=13,0 против Maccuracy=80,9% SD=11,8).

Примеры использования LLM

- Поиск публикаций: LLM могут использоваться для автоматического поиска релевантных публикаций в базах данных, таких как PubMed, Scopus и Web of Science.

- Скрининг заголовков и рефератов: LLM могут использоваться для автоматического скрининга заголовков и рефератов на предмет релевантности, что позволяет рецензентам сосредоточиться на полнотекстовом скрининге.

- Извлечение данных: LLM могут использоваться для автоматического извлечения данных из полнотекстовых статей, таких как характеристики участников, вмешательства и результаты.

- Синтез данных: LLM могут использоваться для автоматического синтеза данных из нескольких статей, что позволяет рецензентам получить более полное представление о состоянии исследований.

Ограничения

- Точность: Хотя LLM достигли значительных успехов в точности, они все еще могут допускать ошибки, особенно при извлечении данных из сложных или неоднозначных текстов.

- Предвзятость: LLM могут быть подвержены предвзятости, основанной на данных, на которых они были обучены.

- Этика: Использование LLM в автоматизации обзора поднимает этические вопросы, такие как прозрачность, подотчетность и потенциальное смещение.



group-telegram.com/selfmadeLibrary/722
Create:
Last Update:

Автоматизация научных обзоров с помощью больших языковых моделей: систематический обзор

Большие языковые модели (LLM) недавно стали одним из самых мощных инструментов обработки естественного языка (NLP) для решения различных задач. В этом систематическом обзоре мы стремились оценить естественное расширение использования LLM для управления и направления процесса обзора.

Методы

Исследование проводилось в июне 2024 года в базах данных PubMed, Scopus, Dimensions и Google Scholar. В обзор были включены только англоязычные публикации, посвященные использованию LLM для автоматизации различных этапов систематического обзора.

Скрининг и извлечение данных проводились в Covidence с помощью разработанного командой плагина LLM для Covidence. Этот плагин использует модель OpenAI gpt-4o и автоматизирует действия в Covidence, такие как нажатие кнопок «Включить/Исключить» или оставление заметок.

Результаты

В общей сложности было найдено 3788 статей, из которых 172 были признаны подходящими для окончательного обзора. ChatGPT и LLM на основе GPT стали наиболее распространенной архитектурой для автоматизации обзора (n=126, 73,2%). Значительное количество проектов по автоматизации обзора было найдено, но лишь ограниченное число статей (n=26, 15,1%) представляли собой фактические обзоры, в которых LLM использовались при их создании.

Большинство статей были сосредоточены на автоматизации определенного этапа обзора, например, на поиске публикаций (n=60, 34,9%) и извлечении данных (n=54, 31,4%). При сравнении совокупной производительности моделей на основе GPT и BERT первые показали лучшие результаты в извлечении данных со средней точностью 83,0% (SD=10,4) и полнотой 86,0% (SD=9,8), в то время как вторые были немного менее точными на этапе скрининга заголовков и рефератов (Maccuracy=77,3%, SD=13,0 против Maccuracy=80,9% SD=11,8).

Примеры использования LLM

- Поиск публикаций: LLM могут использоваться для автоматического поиска релевантных публикаций в базах данных, таких как PubMed, Scopus и Web of Science.

- Скрининг заголовков и рефератов: LLM могут использоваться для автоматического скрининга заголовков и рефератов на предмет релевантности, что позволяет рецензентам сосредоточиться на полнотекстовом скрининге.

- Извлечение данных: LLM могут использоваться для автоматического извлечения данных из полнотекстовых статей, таких как характеристики участников, вмешательства и результаты.

- Синтез данных: LLM могут использоваться для автоматического синтеза данных из нескольких статей, что позволяет рецензентам получить более полное представление о состоянии исследований.

Ограничения

- Точность: Хотя LLM достигли значительных успехов в точности, они все еще могут допускать ошибки, особенно при извлечении данных из сложных или неоднозначных текстов.

- Предвзятость: LLM могут быть подвержены предвзятости, основанной на данных, на которых они были обучены.

- Этика: Использование LLM в автоматизации обзора поднимает этические вопросы, такие как прозрачность, подотчетность и потенциальное смещение.

BY какая-то библиотека




Share with your friend now:
group-telegram.com/selfmadeLibrary/722

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Either way, Durov says that he withdrew his resignation but that he was ousted from his company anyway. Subsequently, control of the company was reportedly handed to oligarchs Alisher Usmanov and Igor Sechin, both allegedly close associates of Russian leader Vladimir Putin. Apparently upbeat developments in Russia's discussions with Ukraine helped at least temporarily send investors back into risk assets. Russian President Vladimir Putin said during a meeting with his Belarusian counterpart Alexander Lukashenko that there were "certain positive developments" occurring in the talks with Ukraine, according to a transcript of their meeting. Putin added that discussions were happening "almost on a daily basis." "There are a lot of things that Telegram could have been doing this whole time. And they know exactly what they are and they've chosen not to do them. That's why I don't trust them," she said. Ukrainian forces have since put up a strong resistance to the Russian troops amid the war that has left hundreds of Ukrainian civilians, including children, dead, according to the United Nations. Ukrainian and international officials have accused Russia of targeting civilian populations with shelling and bombardments. Also in the latest update is the ability for users to create a unique @username from the Settings page, providing others with an easy way to contact them via Search or their t.me/username link without sharing their phone number.
from us


Telegram какая-то библиотека
FROM American