Telegram Group & Telegram Channel
🦾Классический ML – база: справочник основных алгоритмов

🆙 Сегодня будем разговорить про основу основ – про существующие алгоритмы машинного обучения в рамках ключевого справочника, к которому вы сможете обратиться, если что-то вдруг забыли.

1️⃣ Линейные модели:

- Две части разбора алгоритма линейной регрессии и подготовка к собеседованиям по теме данной теме на нашем YouTube-канале: Ч.1 и Ч.2
- Про основы линейной регрессии читайте тут.
- Как насчет вспомнить работу логистической регрессии? Читайте подробный обзор про LogReg на Хабре.
- Также разберите особенности и принципы работы алгоритма "метод опорных векторов" на пальцах. В данном алгоритме есть ключевой гиперпараметр - kernel. С ним можете познакомиться по этой ссылке.
❗️Почитать про линейные модели от Яндекс Учебника можете тут либо изучить мини-курс по линейным моделям от ODS.

2️⃣ Деревья и их ансамбли:

- Понять работу решающих деревьев, на котором строятся самые сильные ансамбли, можете тут. Также для визуалов смотрите ML-Course про деревья и их ансамбли на ODS. Документация и объяснение работы решающих деревьев из scikit-learn.
- Разобраться, как работает случайный лес (RandomForest), можете, изучив следующие материалы: ML для начинающих с разбором RandomForest, про Бутстрэп и Бэггинг и документация scikit-learn.
- Бустим свои знания о градиентном бустинге. Также читаем статью "Градиентный бустинг - просто о сложном".

❗️Дополнительно:
- Про построение всех ансамблей в ML от Яндекс Учебника.
- Особенности алгоритмов CatBoost и LightGBM - статья на Хабре.
- Сравнение всех 3-х алгоритмов градиентного бустинга [ENG].
- Случайный лес в Spark ML.

3️⃣ Временные ряды:

- Хорошая статья про анализ временных рядом.
- Познакомиться с решением задачи временных рядов можно в статье на Яндекс Учебнике.
- Качественный вводный курс по ключевым моментам в задаче временных рядов.
- Модели вида ARIMA.
- Используем statsmodels для временных рядов или пробуем предсказать будущее с помощью библиотеки Prophet.

4️⃣ Кластеризация:


- Избыточный гайд по кластеризации в ML c теорией и практикой
- Кластеризация на Яндекс Учебнике
- Обзор всех методов кластеризации на scikit-learn
- Метод локтя - или как правильно выбирать количество кластеров
- Оценка качества кластеризации - полная статья на Хабре

🔥Курсы и доп. материалы:
- Осенний курс по всем ML-моделям от ODS
- Курс на GitHub с множеством русскоязычных ресурсов по всем темам Data Science и Machine Learning
- Старый, но всегда полезный курс Евгения Соколова по машинному обучению, выложенный на GitHub
- Англо-говорящим рекомендуется от ODS

☝️Помните: глубокое понимание каждого ML-алгоритма +1 к вашему спокойствию на следующем собесе!
🔝Не стесняйтесь в комментариях предлагать ресурсы и материалы, которыми вы пользуетесь!

Ставьте ❤️ и 🔥 за активный труд нашей команды!
65🔥26👍12❤‍🔥1



group-telegram.com/start_ds/504
Create:
Last Update:

🦾Классический ML – база: справочник основных алгоритмов

🆙 Сегодня будем разговорить про основу основ – про существующие алгоритмы машинного обучения в рамках ключевого справочника, к которому вы сможете обратиться, если что-то вдруг забыли.

1️⃣ Линейные модели:

- Две части разбора алгоритма линейной регрессии и подготовка к собеседованиям по теме данной теме на нашем YouTube-канале: Ч.1 и Ч.2
- Про основы линейной регрессии читайте тут.
- Как насчет вспомнить работу логистической регрессии? Читайте подробный обзор про LogReg на Хабре.
- Также разберите особенности и принципы работы алгоритма "метод опорных векторов" на пальцах. В данном алгоритме есть ключевой гиперпараметр - kernel. С ним можете познакомиться по этой ссылке.
❗️Почитать про линейные модели от Яндекс Учебника можете тут либо изучить мини-курс по линейным моделям от ODS.

2️⃣ Деревья и их ансамбли:

- Понять работу решающих деревьев, на котором строятся самые сильные ансамбли, можете тут. Также для визуалов смотрите ML-Course про деревья и их ансамбли на ODS. Документация и объяснение работы решающих деревьев из scikit-learn.
- Разобраться, как работает случайный лес (RandomForest), можете, изучив следующие материалы: ML для начинающих с разбором RandomForest, про Бутстрэп и Бэггинг и документация scikit-learn.
- Бустим свои знания о градиентном бустинге. Также читаем статью "Градиентный бустинг - просто о сложном".

❗️Дополнительно:
- Про построение всех ансамблей в ML от Яндекс Учебника.
- Особенности алгоритмов CatBoost и LightGBM - статья на Хабре.
- Сравнение всех 3-х алгоритмов градиентного бустинга [ENG].
- Случайный лес в Spark ML.

3️⃣ Временные ряды:

- Хорошая статья про анализ временных рядом.
- Познакомиться с решением задачи временных рядов можно в статье на Яндекс Учебнике.
- Качественный вводный курс по ключевым моментам в задаче временных рядов.
- Модели вида ARIMA.
- Используем statsmodels для временных рядов или пробуем предсказать будущее с помощью библиотеки Prophet.

4️⃣ Кластеризация:


- Избыточный гайд по кластеризации в ML c теорией и практикой
- Кластеризация на Яндекс Учебнике
- Обзор всех методов кластеризации на scikit-learn
- Метод локтя - или как правильно выбирать количество кластеров
- Оценка качества кластеризации - полная статья на Хабре

🔥Курсы и доп. материалы:
- Осенний курс по всем ML-моделям от ODS
- Курс на GitHub с множеством русскоязычных ресурсов по всем темам Data Science и Machine Learning
- Старый, но всегда полезный курс Евгения Соколова по машинному обучению, выложенный на GitHub
- Англо-говорящим рекомендуется от ODS

☝️Помните: глубокое понимание каждого ML-алгоритма +1 к вашему спокойствию на следующем собесе!
🔝Не стесняйтесь в комментариях предлагать ресурсы и материалы, которыми вы пользуетесь!

Ставьте ❤️ и 🔥 за активный труд нашей команды!

BY Start Career in DS


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/start_ds/504

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

"We as Ukrainians believe that the truth is on our side, whether it's truth that you're proclaiming about the war and everything else, why would you want to hide it?," he said. After fleeing Russia, the brothers founded Telegram as a way to communicate outside the Kremlin's orbit. They now run it from Dubai, and Pavel Durov says it has more than 500 million monthly active users. On Feb. 27, however, he admitted from his Russian-language account that "Telegram channels are increasingly becoming a source of unverified information related to Ukrainian events." The gold standard of encryption, known as end-to-end encryption, where only the sender and person who receives the message are able to see it, is available on Telegram only when the Secret Chat function is enabled. Voice and video calls are also completely encrypted. "We're seeing really dramatic moves, and it's all really tied to Ukraine right now, and in a secondary way, in terms of interest rates," Octavio Marenzi, CEO of Opimas, told Yahoo Finance Live on Thursday. "This war in Ukraine is going to give the Fed the ammunition, the cover that it needs, to not raise interest rates too quickly. And I think Jay Powell is a very tepid sort of inflation fighter and he's not going to do as much as he needs to do to get that under control. And this seems like an excuse to kick the can further down the road still and not do too much too soon."
from us


Telegram Start Career in DS
FROM American