А что делает ИИ и что способен сделать в медицине? За пределами прямо лживых пресс-релизов про "открытие нового антибиотика за полтора часа".
На данный момент с помощью ИИ выполняют 4 принципиальных типа операций: 1️⃣ Поиск молекул с заданными свойствами в базе данных уже известных химических соединений – распознавание лиц в мире молекул. К этому сводится большинство экспериментов с ИИ, подбирающим молекулы по аналогии с теми, на которых производилось их обучение. Результат выдается за открытие, но, как мы видели на примере абауцина, практическая применимость близка к нулю.
2️⃣ Синтез “новых” препаратов путем перебора различных составных частей молекул. Работа по принципу Lego-конструктора из деталей, собираемого компьютерной моделью. Поражает аудиторию (и инвесторов) получением тысяч потенциальных лекарств за считанные минуты. Но прежде чем препарат попадет на прилавок аптеки, разработчикам нужно будет доказать, что "сконструированная" молекула действительно обладает заданным механизмом действия, безопасна и "воплотима в жизнь". Молекулы надо собирать не только на экране монитора, но и на фабрике. А с этим, как правило, проблемы.
3️⃣ Прогнозирование структуры белков. В 2021 г. было объявлено, что DeepMind от Google предсказал структуру 350 тыс. белков, включая 98,5% известных белков человека. Спустя год его база насчитывала уже более 200 млн белковых структур. Это в пресс-релизе. На практике, из 20 тыс. человеческих белков только для трети по оценкам самого алгоритма, структура была определена с точностью более 90%. Учитывая, что в случае с белками "пространственная конфигурация = эффективность" расхождение оценки ИИ с реальностью означает заведомую ошибочность оценки в двух третях случаев. И самое главное, определить ошибается ли ИИ в структуре конкретного белка или нет может лишь человек в ходе громоздких опытов. DeepMind, как и любой другой ИИ, учится на данных, собранных людьми вручную, определяя неизвестные ему белки “по аналогии”. Но кристаллографические исследования, с помощью которых ученые анализируют их структуру, требуют много времени и ленег, из-за чего не так много подтвержденных данных в этой области.
4️⃣ Поиск новых мишеней. Сюда входит выявление корреляций между заболеванием и определенными генами, опухолью и мутациями в ее клетках, конкретным видом рака и экспрессирующимися на поверхности клеток белками, которые могут служить мишенью для терапии. В качестве одного из примеров можно назвать алгоритм Insilico Medicine, которому принадлежит открытие потенциальных мишеней для лечения бокового амиотрофического склероза (в т.ч. 8 ранее неизвестных генов), различных форм рака, фиброза и анемии при ХБП. С помощью их же платформы двое школьников (!) смогли обнаружить 3 гена-мишени для лечения глиобластомы, а ученые из Мюнхена идентифицировали 2 таргетных белка для лечения острого миелоидного лейкоза с помощью CAR-T терапии. До этого CAR-T не могла применяться против этой формы лейкоза, поскольку на поверхности его раковых клеток отсутствует белок CD19, который служит стандартной мишенью. ИИ смог выявить подходящие для терапии белки, характерные именно для ОМЛ, среди 25 тыс. других белков клеточной мембраны.
Теоретически (и этого все ждут и всем обещают) конечная цель ИИ в медицине - создание таких видов терапии, разработка которых оказалась не под силу людям: новых подходов, позволяющих взглянуть на лечение заболеваний под другим углом. Ближе всех к этой цели подошли модели, созданные в рамках четвертого подхода, но и они все равно повторяют стереотипные действия, которым их обучили. А значит, ИИ можно рассматривать в качестве инструмента, помогающего обрабатывать массивы данных, ждать от него “сверхчеловеческих” достижений в создании лекарств не стоит.
Сознательно не упоминаю сонм моделей по "определению ковида\инсульта\инфаркта\рака по МРТ\кардиограмме\рентгену" (их уже сотни) и так далее. Это просто средство лишить врачей денег и рабочих мест, не способное создать новой ценности кроме заработка авторам алгоритмов и их покровителей-чиновников в принципе.
А что делает ИИ и что способен сделать в медицине? За пределами прямо лживых пресс-релизов про "открытие нового антибиотика за полтора часа".
На данный момент с помощью ИИ выполняют 4 принципиальных типа операций: 1️⃣ Поиск молекул с заданными свойствами в базе данных уже известных химических соединений – распознавание лиц в мире молекул. К этому сводится большинство экспериментов с ИИ, подбирающим молекулы по аналогии с теми, на которых производилось их обучение. Результат выдается за открытие, но, как мы видели на примере абауцина, практическая применимость близка к нулю.
2️⃣ Синтез “новых” препаратов путем перебора различных составных частей молекул. Работа по принципу Lego-конструктора из деталей, собираемого компьютерной моделью. Поражает аудиторию (и инвесторов) получением тысяч потенциальных лекарств за считанные минуты. Но прежде чем препарат попадет на прилавок аптеки, разработчикам нужно будет доказать, что "сконструированная" молекула действительно обладает заданным механизмом действия, безопасна и "воплотима в жизнь". Молекулы надо собирать не только на экране монитора, но и на фабрике. А с этим, как правило, проблемы.
3️⃣ Прогнозирование структуры белков. В 2021 г. было объявлено, что DeepMind от Google предсказал структуру 350 тыс. белков, включая 98,5% известных белков человека. Спустя год его база насчитывала уже более 200 млн белковых структур. Это в пресс-релизе. На практике, из 20 тыс. человеческих белков только для трети по оценкам самого алгоритма, структура была определена с точностью более 90%. Учитывая, что в случае с белками "пространственная конфигурация = эффективность" расхождение оценки ИИ с реальностью означает заведомую ошибочность оценки в двух третях случаев. И самое главное, определить ошибается ли ИИ в структуре конкретного белка или нет может лишь человек в ходе громоздких опытов. DeepMind, как и любой другой ИИ, учится на данных, собранных людьми вручную, определяя неизвестные ему белки “по аналогии”. Но кристаллографические исследования, с помощью которых ученые анализируют их структуру, требуют много времени и ленег, из-за чего не так много подтвержденных данных в этой области.
4️⃣ Поиск новых мишеней. Сюда входит выявление корреляций между заболеванием и определенными генами, опухолью и мутациями в ее клетках, конкретным видом рака и экспрессирующимися на поверхности клеток белками, которые могут служить мишенью для терапии. В качестве одного из примеров можно назвать алгоритм Insilico Medicine, которому принадлежит открытие потенциальных мишеней для лечения бокового амиотрофического склероза (в т.ч. 8 ранее неизвестных генов), различных форм рака, фиброза и анемии при ХБП. С помощью их же платформы двое школьников (!) смогли обнаружить 3 гена-мишени для лечения глиобластомы, а ученые из Мюнхена идентифицировали 2 таргетных белка для лечения острого миелоидного лейкоза с помощью CAR-T терапии. До этого CAR-T не могла применяться против этой формы лейкоза, поскольку на поверхности его раковых клеток отсутствует белок CD19, который служит стандартной мишенью. ИИ смог выявить подходящие для терапии белки, характерные именно для ОМЛ, среди 25 тыс. других белков клеточной мембраны.
Теоретически (и этого все ждут и всем обещают) конечная цель ИИ в медицине - создание таких видов терапии, разработка которых оказалась не под силу людям: новых подходов, позволяющих взглянуть на лечение заболеваний под другим углом. Ближе всех к этой цели подошли модели, созданные в рамках четвертого подхода, но и они все равно повторяют стереотипные действия, которым их обучили. А значит, ИИ можно рассматривать в качестве инструмента, помогающего обрабатывать массивы данных, ждать от него “сверхчеловеческих” достижений в создании лекарств не стоит.
Сознательно не упоминаю сонм моделей по "определению ковида\инсульта\инфаркта\рака по МРТ\кардиограмме\рентгену" (их уже сотни) и так далее. Это просто средство лишить врачей денег и рабочих мест, не способное создать новой ценности кроме заработка авторам алгоритмов и их покровителей-чиновников в принципе.
BY ВИРУСНАЯ НАГРУЗКА
Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260
Some privacy experts say Telegram is not secure enough Ukrainian forces have since put up a strong resistance to the Russian troops amid the war that has left hundreds of Ukrainian civilians, including children, dead, according to the United Nations. Ukrainian and international officials have accused Russia of targeting civilian populations with shelling and bombardments. Oleksandra Matviichuk, a Kyiv-based lawyer and head of the Center for Civil Liberties, called Durov’s position "very weak," and urged concrete improvements. The perpetrators use various names to carry out the investment scams. They may also impersonate or clone licensed capital market intermediaries by using the names, logos, credentials, websites and other details of the legitimate entities to promote the illegal schemes. Telegram does offer end-to-end encrypted communications through Secret Chats, but this is not the default setting. Standard conversations use the MTProto method, enabling server-client encryption but with them stored on the server for ease-of-access. This makes using Telegram across multiple devices simple, but also means that the regular Telegram chats you’re having with folks are not as secure as you may believe.
from us