Telegram Group & Telegram Channel
This media is not supported in your browser
VIEW IN TELEGRAM
5 техник дообучения LLM

Традиционное дообучение невозможно для LLM, поскольку они содержат миллиарды параметров и весят сотни гигабайт. Не у всех есть доступ к такой вычислительной инфраструктуре.

Вот 5 оптимальных способов дообучения LLM:

1) LoRA — вместо того чтобы дообучать всю матрицу весов W, рядом добавляются две обучаемые low-rank матрицы A и B. Все изменения идут через них. Памяти — на порядок меньше (буквально мегабайты).

2) LoRA-FA — Да, LoRA экономит параметры, но прожорлива к активациям. FA = Frozen A — матрица A не обучается, двигаем только B. Получается ещё легче по памяти.

3) VeRA — держит свои A и B для каждого слоя. VeRA идёт дальше — A и B фиксируются случайно и шарятся между слоями. Вместо матриц обучаются векторные скейлы (b, d) по слоям. Минимализм.

4) Delta-LoRA — Идея: не просто обучать A и B, а следить за разницей (delta) между их произведениями на соседних итерациях. Эта дельта прибавляется к W. Такой "косвенный" fine-tuning базовых весов.

5) LoRA+ — В оригинальной LoRA A и B обновляются с одинаковым learning rate. В LoRA+ авторы подняли LR для B — и получили стабильнее и быстрее сходимость. Просто, но работает.

👉 @DataSciencegx
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/DataSciencegx/178
Create:
Last Update:

5 техник дообучения LLM

Традиционное дообучение невозможно для LLM, поскольку они содержат миллиарды параметров и весят сотни гигабайт. Не у всех есть доступ к такой вычислительной инфраструктуре.

Вот 5 оптимальных способов дообучения LLM:

1) LoRA — вместо того чтобы дообучать всю матрицу весов W, рядом добавляются две обучаемые low-rank матрицы A и B. Все изменения идут через них. Памяти — на порядок меньше (буквально мегабайты).

2) LoRA-FA — Да, LoRA экономит параметры, но прожорлива к активациям. FA = Frozen A — матрица A не обучается, двигаем только B. Получается ещё легче по памяти.

3) VeRA — держит свои A и B для каждого слоя. VeRA идёт дальше — A и B фиксируются случайно и шарятся между слоями. Вместо матриц обучаются векторные скейлы (b, d) по слоям. Минимализм.

4) Delta-LoRA — Идея: не просто обучать A и B, а следить за разницей (delta) между их произведениями на соседних итерациях. Эта дельта прибавляется к W. Такой "косвенный" fine-tuning базовых весов.

5) LoRA+ — В оригинальной LoRA A и B обновляются с одинаковым learning rate. В LoRA+ авторы подняли LR для B — и получили стабильнее и быстрее сходимость. Просто, но работает.

👉 @DataSciencegx

BY Data Portal | Data Science & Машиннное обучение


Share with your friend now:
group-telegram.com/DataSciencegx/178

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Recently, Durav wrote on his Telegram channel that users' right to privacy, in light of the war in Ukraine, is "sacred, now more than ever." Founder Pavel Durov says tech is meant to set you free For example, WhatsApp restricted the number of times a user could forward something, and developed automated systems that detect and flag objectionable content. And while money initially moved into stocks in the morning, capital moved out of safe-haven assets. The price of the 10-year Treasury note fell Friday, sending its yield up to 2% from a March closing low of 1.73%. In February 2014, the Ukrainian people ousted pro-Russian president Viktor Yanukovych, prompting Russia to invade and annex the Crimean peninsula. By the start of April, Pavel Durov had given his notice, with TechCrunch saying at the time that the CEO had resisted pressure to suppress pages criticizing the Russian government.
from vn


Telegram Data Portal | Data Science & Машиннное обучение
FROM American