group-telegram.com/ai_machinelearning_big_data/7601
Last Update:
nanoVLM - проект, вдохновленный подходом nanoGPT от Andrej Karpathy, который предлагает минималистичную реализацию VLM на чистом PyTorch.
Код проекта настолько прост, что даже новичок быстро поймет, как устроены компоненты: Vision Backbone (150 строк), Language Decoder (250 строк), проекция модальностей (50 строк) и сама модель (100 строк). Все вместе с тренировочным циклом умещается в 750 строк — идеально для модификаций.
Созданная с помощью nanoVLM модель не претендует на звание прорывной, но дает отличную базу для экспериментов. Комбинация SigLIP-B/16-224-85M (визуальная часть) и SmolLM2-135M (языковая) создает компактную VLM на 222 млн. параметров. После 6 часов обучения на одном H100 GPU и 1.7 млн. примеров из датасета The Cauldron она показывает 35.3% точности на MMStar.
Начать работу можно 3 способами: клонировать репозиторий, запустить готовый Colab-ноутбук или использовать интерактивный туториал в формате ipynb. Даже если у вас нет доступа к топовому железу, эксперименты на Google Colab на бесплатном тиере вполне реальны. Установка максимально облегчена: зависимости минимальны, а логирование и загрузка параметров уже встроены.
nanoVLM отлично подойдет как образовательный проект или тренажер чтобы изучать VLM. В нем есть все для старта — от понятного кода до рабочих примеров. Если вы хотите создать свою мультимодальную модель, но боитесь сложностей, nanoVLM станет отличной песочницей для экспериментов.
@ai_machinelearning_big_data
#AI #ML #VLM #NanoVLM #Github