Telegram Group & Telegram Channel
Исследователи оценивают таким образом две модели – Claude 3.7 и Deepseek-R1. Во-первых, модели часто меняют свой ответ в присутствии подсказки, что ожидаемо. Нативные reasoner-модели чаще упоминают подсказку, чем обычные с CoT, при смене ответа, но делают это в целом достаточно редко: 25% в случае с Claude и 39% у R1, при этом на проблемных видах подсказок эти цифры падают до 20% и 29% соответственно. Что еще более забавно, CoT, в которых модели при смене ответа скрывают использование подсказки, получаются для обеих моделей примерно на треть длиннее и более запутанными. Наконец, сложность вопроса ведет к большей вероятности, что CoT будет ненадежен и скроет использование подсказки – модели реже упоминают подсказку при смене ответа на GPQA, чем на MMLU.

В дополнение к этому исследователи проводят еще два эксперимента. В первом они тюнят модель с помощью RL на решение сложных задач с активным использованием размышлений, чтобы модель больше полагалась на CoT для ответа. CoT становится чуть более надежным, но улучшения достаточно быстро сходят на нет. Во втором они проверяют, можно ли использовать CoT для детектирования reward hacking. Исследователи добавляют ответы в обучение в шести сценариях (по одному на тип подсказки) и поощряют ее за использование подсказок. Модель очень быстро научается выбирать подсказанный ответ вместо правильного, но в среднем лишь в трех процентах случаев пишут о причинах своего выбора в CoT.



group-telegram.com/llmsecurity/524
Create:
Last Update:

Исследователи оценивают таким образом две модели – Claude 3.7 и Deepseek-R1. Во-первых, модели часто меняют свой ответ в присутствии подсказки, что ожидаемо. Нативные reasoner-модели чаще упоминают подсказку, чем обычные с CoT, при смене ответа, но делают это в целом достаточно редко: 25% в случае с Claude и 39% у R1, при этом на проблемных видах подсказок эти цифры падают до 20% и 29% соответственно. Что еще более забавно, CoT, в которых модели при смене ответа скрывают использование подсказки, получаются для обеих моделей примерно на треть длиннее и более запутанными. Наконец, сложность вопроса ведет к большей вероятности, что CoT будет ненадежен и скроет использование подсказки – модели реже упоминают подсказку при смене ответа на GPQA, чем на MMLU.

В дополнение к этому исследователи проводят еще два эксперимента. В первом они тюнят модель с помощью RL на решение сложных задач с активным использованием размышлений, чтобы модель больше полагалась на CoT для ответа. CoT становится чуть более надежным, но улучшения достаточно быстро сходят на нет. Во втором они проверяют, можно ли использовать CoT для детектирования reward hacking. Исследователи добавляют ответы в обучение в шести сценариях (по одному на тип подсказки) и поощряют ее за использование подсказок. Модель очень быстро научается выбирать подсказанный ответ вместо правильного, но в среднем лишь в трех процентах случаев пишут о причинах своего выбора в CoT.

BY llm security и каланы







Share with your friend now:
group-telegram.com/llmsecurity/524

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

And indeed, volatility has been a hallmark of the market environment so far in 2022, with the S&P 500 still down more than 10% for the year-to-date after first sliding into a correction last month. The CBOE Volatility Index, or VIX, has held at a lofty level of more than 30. Given the pro-privacy stance of the platform, it’s taken as a given that it’ll be used for a number of reasons, not all of them good. And Telegram has been attached to a fair few scandals related to terrorism, sexual exploitation and crime. Back in 2015, Vox described Telegram as “ISIS’ app of choice,” saying that the platform’s real use is the ability to use channels to distribute material to large groups at once. Telegram has acted to remove public channels affiliated with terrorism, but Pavel Durov reiterated that he had no business snooping on private conversations. These entities are reportedly operating nine Telegram channels with more than five million subscribers to whom they were making recommendations on selected listed scrips. Such recommendations induced the investors to deal in the said scrips, thereby creating artificial volume and price rise. Following this, Sebi, in an order passed in January 2022, established that the administrators of a Telegram channel having a large subscriber base enticed the subscribers to act upon recommendations that were circulated by those administrators on the channel, leading to significant price and volume impact in various scrips. Lastly, the web previews of t.me links have been given a new look, adding chat backgrounds and design elements from the fully-features Telegram Web client.
from vn


Telegram llm security и каланы
FROM American