Telegram Group & Telegram Channel
neuro-october.png
4.6 MB
tasty neuro bci papers - october 2024
[3/4]

Synthetic touch for brain-controlled bionic hands: tactile edges and motion via patterned microstimulation of the human somatosensory cortex

what: complex touch sensations using patterned brain stimulation. Participants felt edges, shapes, and motion.
- Uses multiple electrodes firing in patterns in somatosensory cortex (S1)
- Creates edge and shape sensations
- Controls motion direction and speed
- Winner of BCI AWARD 2024
video: https://youtu.be/ipojAWqTxAA

Measuring instability in chronic human intracortical neural recordings towards stable, long-term brain-computer interfaces

what: metric to track distribution shift
- apply KL divergence for neural recording
- show that it's well correlated with decoder performance.
- good thing to track moment of recalibration.
link: https://www.nature.com/articles/s42003-024-06784-4


Accurate neural control of a hand prosthesis by posture-related activity in the primate grasping circuit

what: hand prosthetic control using neural posture signals instead of traditional velocity. Achieves precision grip control in macaques.
- Uses posture transitions vs standard velocity control
- Works with 3 brain areas (AIP, F5, M1)
- Matches natural hand control patterns
link: https://www.cell.com/neuron/abstract/S0896-6273(24)00688-3

my thoughts

Shift from "feeling dots" to "feeling objects" is amazing. That's like upgrading from morse code to actual writing for touch sensations. For sure, it's not perfect and we have to continue. In my view we should focus on "smart" stimulation. Which can use diverse feedback from participant. Maybe mix of RL and SFT.

Measuring changes in the neural recording is must have in any bci application. KL div is good starting point. however, plots show smooth performance degradation. So potentially we could capture this shift day by day and somehow fix it. For example, it's interesting to consider "stabilizer model" which should to match shifted data into original distribution. Flow matching, diffusion, or just AE with KL loss.



group-telegram.com/neural_cell/204
Create:
Last Update:

tasty neuro bci papers - october 2024
[3/4]

Synthetic touch for brain-controlled bionic hands: tactile edges and motion via patterned microstimulation of the human somatosensory cortex

what: complex touch sensations using patterned brain stimulation. Participants felt edges, shapes, and motion.
- Uses multiple electrodes firing in patterns in somatosensory cortex (S1)
- Creates edge and shape sensations
- Controls motion direction and speed
- Winner of BCI AWARD 2024
video: https://youtu.be/ipojAWqTxAA

Measuring instability in chronic human intracortical neural recordings towards stable, long-term brain-computer interfaces

what: metric to track distribution shift
- apply KL divergence for neural recording
- show that it's well correlated with decoder performance.
- good thing to track moment of recalibration.
link: https://www.nature.com/articles/s42003-024-06784-4


Accurate neural control of a hand prosthesis by posture-related activity in the primate grasping circuit

what: hand prosthetic control using neural posture signals instead of traditional velocity. Achieves precision grip control in macaques.
- Uses posture transitions vs standard velocity control
- Works with 3 brain areas (AIP, F5, M1)
- Matches natural hand control patterns
link: https://www.cell.com/neuron/abstract/S0896-6273(24)00688-3

my thoughts

Shift from "feeling dots" to "feeling objects" is amazing. That's like upgrading from morse code to actual writing for touch sensations. For sure, it's not perfect and we have to continue. In my view we should focus on "smart" stimulation. Which can use diverse feedback from participant. Maybe mix of RL and SFT.

Measuring changes in the neural recording is must have in any bci application. KL div is good starting point. however, plots show smooth performance degradation. So potentially we could capture this shift day by day and somehow fix it. For example, it's interesting to consider "stabilizer model" which should to match shifted data into original distribution. Flow matching, diffusion, or just AE with KL loss.

BY the last neural cell


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/neural_cell/204

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

"We're seeing really dramatic moves, and it's all really tied to Ukraine right now, and in a secondary way, in terms of interest rates," Octavio Marenzi, CEO of Opimas, told Yahoo Finance Live on Thursday. "This war in Ukraine is going to give the Fed the ammunition, the cover that it needs, to not raise interest rates too quickly. And I think Jay Powell is a very tepid sort of inflation fighter and he's not going to do as much as he needs to do to get that under control. And this seems like an excuse to kick the can further down the road still and not do too much too soon." Telegram Messenger Blocks Navalny Bot During Russian Election "The result is on this photo: fiery 'greetings' to the invaders," the Security Service of Ukraine wrote alongside a photo showing several military vehicles among plumes of black smoke. These administrators had built substantial positions in these scrips prior to the circulation of recommendations and offloaded their positions subsequent to rise in price of these scrips, making significant profits at the expense of unsuspecting investors, Sebi noted. And while money initially moved into stocks in the morning, capital moved out of safe-haven assets. The price of the 10-year Treasury note fell Friday, sending its yield up to 2% from a March closing low of 1.73%.
from vn


Telegram the last neural cell
FROM American