Telegram Group & Telegram Channel
Очередная (см. ранее) история ускорения, в которой не понадобились никакие знания алгоритмов.

Пилю на досуге одну задачку, которая в некотором смысле сводится к семантической сегментации. Правда, у этой сегментации есть несколько нюансов: несколько подзадач, у каждого семпла может быть подмножество масок, разного размера, но все довольно жирные (по ~30 мегабайт в PNG). Таким образом, первая версия пайплайна, которую я написал в лоб, не могла загрузить даже слабенькую GPU, подготовка батчей занимала слишком много времени, около секунды на семпл. Учитывая, что это все крутится на арендном железе, оставалась опция купить тачку с кучей CPU ядер, но я слишком жадный.

В общем, надо было как-то эффективнее перепаковать данные. Коллега посоветовал deeplake, и на первый взгляд он выглядел многообещающе. На практике же оказалось, что все красиво на бумаге, а с реальным датасетом все сильно хуже. Наверное, если бы мои картинки были всегда одинакового шейпа, а набор масок для семплов был бы одинаковым, все пошло бы гладко. Но мой датасет, собранный с бору по сосенке, был слишком неконсистентным, и через пару часов ковыряния с deeplake мне надоело придумывать костыли для инструмента, который вроде как должен упростить мне жизнь, а не усложнить.

Не будь у меня ограничений по диску, единожды перепаковать все каким-нибудь np.savez было бы эффективно: размен разового препроцессинага на быстрый IO. Но это бы раздуло датасет в несколько раз, тоже не очень. Есть np.savez_compressed, который еще и зипует, но он убивает все преимущества в скорости. Так я пришел к тому, что мне нужен аналог np.savez_compressed на стероидах.

Помимо древнего zip, есть и более современные алгоритмы быстрой компрессии, например, LZ4 или Zstandard. Я выбрал zstd (поверхностный гуглинг подсказал, что он более гибкий на спектре от быстрого до компактного сжатия) и написал сгенерил примерно пятнадцать строк простой обертки и еще чуть больше для скрипта препроцессинга.

Степень сжатия пока даже не тюнил, а выбрал наугад. В результате загрузка данных ускорилась примерно в четыре раза, а размер датасета вырос на 10% по сравнению с PNG.



group-telegram.com/partially_unsupervised/203
Create:
Last Update:

Очередная (см. ранее) история ускорения, в которой не понадобились никакие знания алгоритмов.

Пилю на досуге одну задачку, которая в некотором смысле сводится к семантической сегментации. Правда, у этой сегментации есть несколько нюансов: несколько подзадач, у каждого семпла может быть подмножество масок, разного размера, но все довольно жирные (по ~30 мегабайт в PNG). Таким образом, первая версия пайплайна, которую я написал в лоб, не могла загрузить даже слабенькую GPU, подготовка батчей занимала слишком много времени, около секунды на семпл. Учитывая, что это все крутится на арендном железе, оставалась опция купить тачку с кучей CPU ядер, но я слишком жадный.

В общем, надо было как-то эффективнее перепаковать данные. Коллега посоветовал deeplake, и на первый взгляд он выглядел многообещающе. На практике же оказалось, что все красиво на бумаге, а с реальным датасетом все сильно хуже. Наверное, если бы мои картинки были всегда одинакового шейпа, а набор масок для семплов был бы одинаковым, все пошло бы гладко. Но мой датасет, собранный с бору по сосенке, был слишком неконсистентным, и через пару часов ковыряния с deeplake мне надоело придумывать костыли для инструмента, который вроде как должен упростить мне жизнь, а не усложнить.

Не будь у меня ограничений по диску, единожды перепаковать все каким-нибудь np.savez было бы эффективно: размен разового препроцессинага на быстрый IO. Но это бы раздуло датасет в несколько раз, тоже не очень. Есть np.savez_compressed, который еще и зипует, но он убивает все преимущества в скорости. Так я пришел к тому, что мне нужен аналог np.savez_compressed на стероидах.

Помимо древнего zip, есть и более современные алгоритмы быстрой компрессии, например, LZ4 или Zstandard. Я выбрал zstd (поверхностный гуглинг подсказал, что он более гибкий на спектре от быстрого до компактного сжатия) и написал сгенерил примерно пятнадцать строк простой обертки и еще чуть больше для скрипта препроцессинга.

Степень сжатия пока даже не тюнил, а выбрал наугад. В результате загрузка данных ускорилась примерно в четыре раза, а размер датасета вырос на 10% по сравнению с PNG.

BY partially unsupervised


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/partially_unsupervised/203

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Asked about its stance on disinformation, Telegram spokesperson Remi Vaughn told AFP: "As noted by our CEO, the sheer volume of information being shared on channels makes it extremely difficult to verify, so it's important that users double-check what they read." The regulator said it has been undertaking several campaigns to educate the investors to be vigilant while taking investment decisions based on stock tips. Recently, Durav wrote on his Telegram channel that users' right to privacy, in light of the war in Ukraine, is "sacred, now more than ever." Sebi said data, emails and other documents are being retrieved from the seized devices and detailed investigation is in progress. At its heart, Telegram is little more than a messaging app like WhatsApp or Signal. But it also offers open channels that enable a single user, or a group of users, to communicate with large numbers in a method similar to a Twitter account. This has proven to be both a blessing and a curse for Telegram and its users, since these channels can be used for both good and ill. Right now, as Wired reports, the app is a key way for Ukrainians to receive updates from the government during the invasion.
from vn


Telegram partially unsupervised
FROM American