✅ یادگیری ماشین و مدلسازی بیزی در تحلیل علوم اعصاب، مدلهای آماری مختلفی برای تفسیر دادههای پیچیده و به دست آوردن بینشهای معنادار استفاده میشود. این مدلها را میتوان بهطور کلی به روشهای آمار کلاسیک و یادگیری ماشینی دستهبندی کرد که هر کدام اهداف مشخصی را در تحقیقات انجام میدهند.بخشهای زیر محبوبترین مدلهای آماری مورد استفاده در علوم اعصاب را تشریح میکند.
◀️آمار کلاسیک آزمون فرضیه صفر: روشهای رایج مورد استفاده شامل آزمونهای t و ANOVA هستند که به تعیین اهمیت اثرات مشاهدهشده در دادههای تصویربرداری عصبی کمک میکنند.
🟣تجزیه و تحلیل رگرسیون: این روشها روابط بین متغیرها را ارزیابی میکنند و بینشی در مورد عملکرد و ساختار مغز ارائه میکنند.
◀️رویکردهای یادگیری ماشینی یادگیری نظارت شده: تکنیکهایی مانند ماشینهای بردار پشتیبان (SVM)، درختهای تصمیمگیری و شبکههای عصبی اغلب برای کارهای طبقهبندی در علوم اعصاب استفاده میشوند.
🟣مدلسازی بیزی: این رویکرد عدم قطعیت را تخمین میزند و مستقیماً ویژگیهایی را از مجموعه دادهها استنباط میکند و آن را برای درک پیشرفت بیماری ارزشمند میسازد.
✅ در حالی که آمار کلاسیک چارچوبی قوی برای آزمایش فرضیهها ارائه میکند، یادگیری ماشینی انعطافپذیری و سازگاری را در تجزیه و تحلیل دادههای با ابعاد بالا ارائه میدهد که نشاندهنده رابطه مکمل بین این دو روش در تحقیقات علوم اعصاب است.
📎مقالهی بررسی ابزارهای آمار زیستی رایج در علوم اعصاب به بررسی جمعبندی رویکردهای مختلف در بیماریهای گوناگون میپردازد و امیدوار است که نقش بالقوه ابزارهای آمار زیستی در علوم اعصاب را معرفی کند.
⌛ یادگیری ماشین به عنوان یک روش برای ساخت مدلها و شناسایی همبستگیها میان ویژگیهای دادهها شناخته میشود. در این زمینه، تکنیکهایی مانند رگرسیون لجستیک، درختهای تصمیم، ماشینهای بردار پشتیبان (SVM)، جنگل تصادفی (RF) و شبکههای عصبی به عنوان رویکردهای رایج مورد استفاده قرار میگیرند. همچنین، مدلسازی بیزی به دلیل تواناییاش در برآورد ویژگیها بهطور مستقیم از مجموعه دادهها و نه از طریق توزیع نمونهبرداری، به عنوان روشی برای مدیریت عدم قطعیت مدلها مطرح است. این روشها در تشخیص و پیشرفت بیماریها در علوم اعصاب بسیار کارآمد بودهاند.
✅ یادگیری ماشین و مدلسازی بیزی در تحلیل علوم اعصاب، مدلهای آماری مختلفی برای تفسیر دادههای پیچیده و به دست آوردن بینشهای معنادار استفاده میشود. این مدلها را میتوان بهطور کلی به روشهای آمار کلاسیک و یادگیری ماشینی دستهبندی کرد که هر کدام اهداف مشخصی را در تحقیقات انجام میدهند.بخشهای زیر محبوبترین مدلهای آماری مورد استفاده در علوم اعصاب را تشریح میکند.
◀️آمار کلاسیک آزمون فرضیه صفر: روشهای رایج مورد استفاده شامل آزمونهای t و ANOVA هستند که به تعیین اهمیت اثرات مشاهدهشده در دادههای تصویربرداری عصبی کمک میکنند.
🟣تجزیه و تحلیل رگرسیون: این روشها روابط بین متغیرها را ارزیابی میکنند و بینشی در مورد عملکرد و ساختار مغز ارائه میکنند.
◀️رویکردهای یادگیری ماشینی یادگیری نظارت شده: تکنیکهایی مانند ماشینهای بردار پشتیبان (SVM)، درختهای تصمیمگیری و شبکههای عصبی اغلب برای کارهای طبقهبندی در علوم اعصاب استفاده میشوند.
🟣مدلسازی بیزی: این رویکرد عدم قطعیت را تخمین میزند و مستقیماً ویژگیهایی را از مجموعه دادهها استنباط میکند و آن را برای درک پیشرفت بیماری ارزشمند میسازد.
✅ در حالی که آمار کلاسیک چارچوبی قوی برای آزمایش فرضیهها ارائه میکند، یادگیری ماشینی انعطافپذیری و سازگاری را در تجزیه و تحلیل دادههای با ابعاد بالا ارائه میدهد که نشاندهنده رابطه مکمل بین این دو روش در تحقیقات علوم اعصاب است.
📎مقالهی بررسی ابزارهای آمار زیستی رایج در علوم اعصاب به بررسی جمعبندی رویکردهای مختلف در بیماریهای گوناگون میپردازد و امیدوار است که نقش بالقوه ابزارهای آمار زیستی در علوم اعصاب را معرفی کند.
⌛ یادگیری ماشین به عنوان یک روش برای ساخت مدلها و شناسایی همبستگیها میان ویژگیهای دادهها شناخته میشود. در این زمینه، تکنیکهایی مانند رگرسیون لجستیک، درختهای تصمیم، ماشینهای بردار پشتیبان (SVM)، جنگل تصادفی (RF) و شبکههای عصبی به عنوان رویکردهای رایج مورد استفاده قرار میگیرند. همچنین، مدلسازی بیزی به دلیل تواناییاش در برآورد ویژگیها بهطور مستقیم از مجموعه دادهها و نه از طریق توزیع نمونهبرداری، به عنوان روشی برای مدیریت عدم قطعیت مدلها مطرح است. این روشها در تشخیص و پیشرفت بیماریها در علوم اعصاب بسیار کارآمد بودهاند.
He floated the idea of restricting the use of Telegram in Ukraine and Russia, a suggestion that was met with fierce opposition from users. Shortly after, Durov backed off the idea. Telegram, which does little policing of its content, has also became a hub for Russian propaganda and misinformation. Many pro-Kremlin channels have become popular, alongside accounts of journalists and other independent observers. Soloviev also promoted the channel in a post he shared on his own Telegram, which has 580,000 followers. The post recommended his viewers subscribe to "War on Fakes" in a time of fake news. In the past, it was noticed that through bulk SMSes, investors were induced to invest in or purchase the stocks of certain listed companies. The company maintains that it cannot act against individual or group chats, which are “private amongst their participants,” but it will respond to requests in relation to sticker sets, channels and bots which are publicly available. During the invasion of Ukraine, Pavel Durov has wrestled with this issue a lot more prominently than he has before. Channels like Donbass Insider and Bellum Acta, as reported by Foreign Policy, started pumping out pro-Russian propaganda as the invasion began. So much so that the Ukrainian National Security and Defense Council issued a statement labeling which accounts are Russian-backed. Ukrainian officials, in potential violation of the Geneva Convention, have shared imagery of dead and captured Russian soldiers on the platform.
from ye